Линза и ее характеристики. Оптические линзы (физика): определение, описание, формула и решение

💖 Нравится? Поделись с друзьями ссылкой

Линзой называется прозрачное тело, ограниченное двумя сферическими поверхностями. Если толщина самой линзы мала по сравнению с радиусами кривизны сферических поверхностей, то линзу называют тонкой .

Линзы входят в состав практически всех оптических приборов. Линзы бывают собирающими и рассеивающими . Собирающая линза в середине толще, чем у краев, рассеивающая линза, наоборот, в средней части тоньше (рис. 3.3.1).

Прямая, проходящая через центры кривизны O 1 и O 2 сферических поверхностей, называется главной оптической осью линзы. В случае тонких линз приближенно можно считать, что главная оптическая ось пересекается с линзой в одной точке, которую принято называть оптическим центром линзы O . Луч света проходит через оптический центр линзы, не отклоняясь от первоначального направления. Все прямые, проходящие через оптический центр, называются побочными оптическими осями .

Если на линзу направить пучок лучей, параллельных главной оптической оси, то после прохождения через линзу лучи (или их продолжения) соберутся в одной точке F , которая называется главным фокусом линзы. У тонкой линзы имеются два главных фокуса, расположенных симметрично на главной оптической оси относительно линзы. У собирающих линз фокусы действительные, у рассеивающих - мнимые. Пучки лучей, параллельных одной из побочных оптических осей, после прохождения через линзу также фокусируются в точку F" , которая расположена при пересечении побочной оси с фокальной плоскостью Ф , то есть плоскостью, перпендикулярной главной оптической оси и проходящей через главный фокус (рис. 3.3.2). Расстояние между оптическим центром линзы O и главным фокусом F называется фокусным расстоянием. Оно обозначается той же буквой F .

Основное свойство линз - способность давать изображения предметов . Изображения бывают прямыми и перевернутыми , действительными и мнимыми , у величенными и уменьшенными .

Положение изображения и его характер можно определить с помощью геометрических построений. Для этого используют свойства некоторых стандартных лучей, ход которых известен. Это лучи, проходящие через оптический центр или один из фокусов линзы, а также лучи, параллельные главной или одной из побочных оптических осей. Примеры таких построений представлены на рис. 3.3.3 и 3.3.4.

Следует обратить внимание на то, что некоторые из стандартных лучей, использованных на рис. 3.3.3 и 3.3.4 для построения изображений, не проходят через линзу. Эти лучи реально не участвуют в образовании изображения, но они могут быть использованы для построений.

Положение изображения и его характер (действительное или мнимое) можно также рассчитать с помощью формулы тонкой линзы . Если расстояние от предмета до линзы обозначить через d , а расстояние от линзы до изображения через f , то формулу тонкой линзы можно записать в виде:

Величину D , обратную фокусному расстоянию. называют оптической силой линзы. Единицой измерения оптической силы является диоптрия (дптр). Диоптрия - оптическая сила линзы с фокусным расстоянием 1 м:

1 дптр = м -1 .

Формула тонкой линзы аналогична формуле сферического зеркала. Ее можно получить для параксиальных лучей из подобия треугольников на рис. 3.3.3 или 3.3.4.

Фокусным расстояниям линз принято приписывать определенные знаки: для собирающей линзы F > 0, для рассеивающей F < 0.

Величины d и f также подчиняются определенному правилу знаков:

d > 0 и f > 0 - для действительных предметов (то есть реальных источников света, а не продолжений лучей, сходящихся за линзой) и изображений;

d < 0 и f < 0 - для мнимых источников и изображений.

Для случая, изображенного на рис. 3.3.3, имеем: F > 0 (линза собирающая), d = 3F > 0 (действительный предмет).

По формуле тонкой линзы получим: , следовательно, изображение действительное.

В случае, изображенном на рис. 3.3.4, F < 0 (линза рассеивающая), d = 2|F | > 0 (действительный предмет), , то есть изображение мнимое.

В зависимости от положения предмета по отношению к линзе изменяются линейные размеры изображения. Линейным увеличением линзы Γ называют отношение линейных размеров изображения h" и предмета h . Величине h" , как и в случае сферического зеркала, удобно приписывать знаки плюс или минус в зависимости от того, является изображение прямым или перевернутым. Величина h всегда считается положительной. Поэтому для прямых изображений Γ > 0, для перевернутых Γ < 0. Из подобия треугольников на рис. 3.3.3 и 3.3.4 легко получить формулу для линейного увеличения тонкой линзы:

В рассмотренном примере с собирающей линзой (рис. 3.3.3): d = 3F > 0, , следовательно, - изображение перевернутое и уменьшенное в 2 раза.

В примере с рассеивающей линзой (рис. 3.3.4): d = 2|F | > 0, ; следовательно, - изображение прямое и уменьшенное в 3 раза.

Оптическая сила D линзы зависит как от радиусов кривизны R 1 и R 2 ее сферических поверхностей, так и от показателя преломления n материала, из которого изготовлена линза. В курсах оптики доказывается следующая формула:

Радиус кривизны выпуклой поверхности считается положительным, вогнутой - отрицательным. Эта формула используется при изготовлении линз с заданной оптической силой.

Во многих оптических приборах свет последовательно проходит через две или несколько линз. Изображение предмета, даваемое первой линзой, служит предметом (действительным или мнимым) для второй линзы, которая строит второе изображение предмета. Это второе изображение также может быть действительным или мнимым. Расчет оптической системы из двух тонких линз сводится к двукратному применению формулы линзы, при этом расстояние d 2 от первого изображения до второй линзы следует положить равным величине l - f 1 , где l - расстояние между линзами. Рассчитанная по формуле линзы величина f 2 определяет положение второго изображения и его характер (f 2 > 0 - действительное изображение, f 2 < 0 - мнимое). Общее линейное увеличение Γ системы из двух линз равно произведению линейных увеличений обеих линз: Γ = Γ 1 · Γ 2 . Если предмет или его изображение находятся в бесконечности, то линейное увеличение утрачивает смысл, изменяются только угловые расстояния.

Частным случаем является телескопический ход лучей в системе из двух линз, когда и предмет, и второе изображение находятся на бесконечно больших расстояниях. Телескопический ход лучей реализуется в зрительных трубах - астрономической трубе Кеплера и земной трубе Галилея .

Тонкие линзы обладают рядом недостатков, не позволяющих получать высококачественные изображения. Искажения, возникающие при формировании изображения, называются аберрациями . Главные из них - сферическая и хроматическая аберрации. Сферическая аберрация проявляется в том, что в случае широких световых пучков лучи, далекие от оптической оси, пересекают ее не в фокусе. Формула тонкой линзы справедлива только для лучей, близких к оптической оси. Изображение удаленного точечного источника, создаваемое широким пучком лучей, преломленных линзой, оказывается размытым.

Хроматическая аберрация возникает вследствие того, что показатель преломления материала линзы зависит от длины волны света λ. Это свойство прозрачных сред называется дисперсией. Фокусное расстояние линзы оказывается различным для света с разными длинами волн, что приводит к размытию изображения при использовании немонохроматического света.

В современных оптических приборах применяются не тонкие линзы, а сложные многолинзовые системы, в которых удается приближенно устранить различные аберрации.

Формирование собирающей линзой действительного изображения предмета используется во многих оптических приборах, таких как фотоаппарат, проектор и т. д.

Фотоаппарат представляет собой замкнутую светонепроницаемую камеру. Изображение фотографируемых предметов создается на фотопленке системой линз, которая называется объективом . Специальный затвор позволяет открывать объектив на время экспозиции.

Особенностью работы фотоаппарата является то, что на плоской фотопленке должны получаться достаточно резкими изображения предметов, находящихся на разных расстояниях.

В плоскости фотопленки получаются резкими только изображения предметов, находящихся на определенном расстоянии. Наведение на резкость достигается перемещением объектива относительно пленки. Изображения точек, не лежащих в плоскости резкого наведения, получаются размытыми в виде кружков рассеяния. Размер d этих кружков может быть уменьшен путем диафрагмирования объектива, т.е. уменьшения относительного отверстия a / F (рис. 3.3.5). Это приводит к увеличению глубины резкости.

Рисунок 3.3.5.

Фотоаппарат

Проекционный аппарат предназначен для получения крупномасштабных изображений. Объектив O проектора фокусирует изображение плоского предмета (диапозитив D ) на удаленном экране Э (рис. 3.3.6). Система линз K , называемая конденсором , предназначена для того, чтобы сконцентрировать свет источника S на диапозитиве. На экране Э создается действительное увеличенное перевернутое изображение. Увеличение проекционного аппарата можно менять, приближая или удаляя экран Э с одновременным изменением расстояния между диапозитивом D и объективом O .

Существуют объекты, которые способны изменять плотность падающего на них потока электромагнитного излучения, то есть либо увеличивать его, собирая в одну точку, либо уменьшать его путем рассеивания. Эти объекты называются линзами в физике. Рассмотрим подробнее этот вопрос.

Что представляют собой линзы в физике?

Под этим понятием подразумевают абсолютно любой объект, который способен изменять направление распространения электромагнитного излучения. Это общее определение линз в физике, под которое попадают оптические стекла, магнитные и гравитационные линзы.

В данной статье главное внимание будет уделено именно оптическим стеклам, которые представляют собой объекты, изготовленные из прозрачного материала, и ограниченные двумя поверхностями. Одна из этих поверхностей обязательно должна иметь кривизну (то есть являться частью сферы конечного радиуса), в противном случае объект не будет обладать свойством изменения направления распространения световых лучей.

Принцип работы линзы

Суть работы этого незамысловатого оптического объекта заключается в явлении преломления солнечных лучей. В начале XVII века знаменитый голландский физик и астроном Виллеброрд Снелл ван Ройен опубликовал закон преломления, который в настоящее время носит его фамилию. Формулировка этого закона следующая: когда солнечный свет переходит через границу раздела двух оптически прозрачных сред, то произведение синуса между лучом и нормалью к поверхности на коэффициент преломления среды, в которой он распространяется, является величиной постоянной.

Для пояснения вышесказанного приведем пример: пусть свет падает на поверхность воды, при этом угол между нормалью к поверхности и лучом равен θ 1 . Затем, световой пучок преломляется и начинает свое распространение в воде уже под углом θ 2 к нормали к поверхности. Согласно закону Снелла получим: sin(θ 1)*n 1 = sin(θ 2)*n 2 , здесь n 1 и n 2 - коэффициенты преломления для воздуха и воды, соответственно. Что такое коэффициент преломления? Это величина, показывающая, во сколько раз скорость распространения электромагнитных волн в вакууме больше таковой для оптически прозрачной среды, то есть n = c/v, где c и v - скорости света в вакууме и в среде, соответственно.

Физика возникновения преломления заключается в выполнении принципа Ферма, согласно которому свет движется таким образом, чтобы за наименьшее время преодолеть расстояние от одной точки к другой в пространстве.

Вид оптической линзы в физике определяется исключительно формой поверхностей, которые ее образуют. От этой формы зависит направление преломления падающего на них луча. Так, если кривизна поверхности будет положительной (выпуклой), то по выходе из линзы световой пучок будет распространяться ближе к ее оптической оси (см. ниже). Наоборот, если кривизна поверхности является отрицательной (вогнутой), тогда пройдя через оптическое стекло, луч станет удаляться от его центральной оси.

Отметим еще раз, что поверхность любой кривизны преломляет лучи одинаково (согласно закону Стелла), но нормали к ним имеют разный наклон относительно оптической оси, в результате получается разное поведение преломленного луча.

Линза, которая ограничена двумя выпуклыми поверхностями, называется собирающей. В свою очередь, если она образована двумя поверхностями с отрицательной кривизной, тогда она называется рассеивающей. Все остальные виды связаны с комбинацией указанных поверхностей, к которым добавляется еще и плоскость. Каким свойством будет обладать комбинированная линза (рассеивающим или собирающим), зависит от суммарной кривизны радиусов ее поверхностей.

Элементы линзы и свойства лучей

Для построения в линзах в физике изображений необходимо познакомиться с элементами этого объекта. Они приведены ниже:

  • Главная оптическая ось и центр. В первом случае имеют в виду прямую, проходящую перпендикулярно линзе через ее оптический центр. Последний, в свою очередь, представляет собой точку внутри линзы, проходя через которую, луч не испытывает преломления.
  • Фокусное расстояние и фокус - дистанция между центром и точкой на оптической оси, в которую собираются все падающие на линзу параллельно этой оси лучи. Это определение верно для собирающих оптических стекол. В случае рассеивающих линз собираться в точку будут не сами лучи, а мнимое их продолжение. Эта точка называется главным фокусом.
  • Оптическая сила. Так называется величина, обратная фокусному расстоянию, то есть D = 1/f. Измеряется она в диоптриях (дптр.), то есть 1 дптр. = 1 м -1 .

Ниже приводятся основные свойства лучей, которые проходят через линзу:

  • пучок, проходящий через оптический центр, не изменяет направления своего движения;
  • лучи, падающие параллельно главной оптической оси, изменяют свое направление так, что проходят через главный фокус;
  • лучи, падающие на оптическое стекло под любым углом, но проходящие через его фокус, изменяют свое направление распространения таким образом, что становятся параллельными главной оптической оси.

Приведенные выше свойства лучей для тонких линз в физике (так их называют, потому что не важно, какими сферами они образованы, и какой толщиной обладают, имеют значение только оптические свойства объекта) используются для построения изображений в них.

Изображения в оптических стеклах: как строить?

Ниже приведен рисунок, где подробно разобраны схемы построения изображений в выпуклой и вогнутой линзах объекта (красной стрелки) в зависимости от его положения.

Из анализа схем на рисунке следуют важные выводы:

  • Любое изображение строится всего на 2-х лучах (проходящем через центр и параллельном главной оптической оси).
  • Собирающие линзы (обозначаются со стрелками на концах, направленными наружу) могут давать как увеличенное, так и уменьшенное изображение, которое в свою очередь может быть реальным (действительным) или мнимым.
  • Если предмет расположен в фокусе, то линза не образует его изображения (см. нижнюю схему слева на рисунке).
  • Рассеивающие оптические стекла (обозначаются стрелками на их концах, направленными внутрь) дают независимо от положения предмета всегда уменьшенное и мнимое изображение.

Нахождение расстояния до изображения

Чтобы определять, на каком расстоянии появится изображение, зная положение самого предмета, приведем формулу линзы в физике: 1/f = 1/d o + 1/d i , где d o и d i - расстояние до предмета и до его изображения от оптического центра, соответственно, f - главный фокус. Если речь идет о собирающем оптическом стекле, тогда число f будет положительным. Наоборот, для рассеивающей линзы f - отрицательное.

Воспользуемся этой формулой и решим простую задачу: пусть предмет находится на расстоянии d o = 2*f от центра собирающего оптического стекла. Где появится его изображение?

Из условия задачи имеем: 1/f = 1/(2*f)+1/d i . Откуда: 1/d i = 1/f - 1/(2*f) = 1/(2*f), то есть d i = 2*f. Таким образом, изображение появится на расстоянии двух фокусов от линзы, но уже с другой стороны, чем сам предмет (об этом говорит положительный знак величины d i).

Краткая история

Любопытно привести этимологию слова "линза". Оно ведет происхождение от латинских слов lens и lentis, что означает "чечевица", поскольку оптические объекты по своей форме действительно похожи на плод этого растения.

Преломляющая способность сферических прозрачных тел была известна еще древним римлянам. Для этой цели они применяли круглые стеклянные сосуды, наполненные водой. Сами же стеклянные линзы начали изготавливаться только в XIII веке в Европе. Использовались они в качестве инструмента для чтения (современные очки или лупа).

Активное использование оптических объектов при изготовлении телескопов и микроскопов относится к XVII (в начале этого века Галилей изобрел первый телескоп). Отметим, что математическая формулировка закона преломления Стелла, без знания которой невозможно изготавливать линзы с заданными свойствами, была опубликована голландским ученым в начале того же XVII века.

Другие виды линз

Как было отмечено выше, помимо оптических преломляющих объектов, существуют также магнитные и гравитационные. Примером первых являются магнитные линзы в электронном микроскопе, яркий пример вторых заключается в искажении направления светового потока, когда он проходит вблизи массивных космических тел (звезд, планет).

Оптические приборы - устройства, в которых излучение какой-либо области спектра (ультрафиолетовой, видимой, инфракрасной) преобразуется (пропускается, отражается, преломляется, поляризуется).

Отдавая дань исторической традиции, оптическими обычно называют приборы, работающие в видимом свете .

При первичной оценке качества прибора рассматриваются лишь основные его характеристики:

  • светосила - способность концентрировать излучение;
  • разрешающая сила - способность различать соседние детали изображения;
  • увеличение - соотношение размеров предмета и его изображения.
  • Для многих приборов определяющей характеристикой оказывается поле зрения - угол, под которым из центра прибора видны крайние точки предмета.

Разрешающая сила (способность) - характеризует способность оптических приборов давать раздельные изображения двух близких друг к другу точек объекта .

Наименьшее линейное или угловое расстояние между двумя точками, начиная с которого их изображения сливаются, называется линейным или угловым пределом разрешения .

Способность прибора различать две близкие точки или линии обусловлена волновой природой света. Численное значение разрешающей силы, например, линзовой системы, зависит от умения конструктора справиться с аберрациями линз и тщательно отцентрировать эти линзы на одной оптической оси. Теоретический предел разрешения двух соседних изображаемых точек определяется как равенство расстояния между их центрами радиусу первого темного кольца их дифракционной картины.

Увеличение. Если предмет длиной H перпендикулярен оптической оси системы, а длина его изображения h, то увеличение m определяется по формуле:

m = h/H .

Увеличение зависит от фокусных расстояний и взаимного расположения линз; для выражения этой зависимости существуют соответствующие формулы.

Важной характеристикой приборов для визуального наблюдения является видимое увеличение М . Оно определяется из отношения размеров изображений предмета, которые образуются на сетчатке глаза при непосредственном наблюдении предмета и рассматривании его через прибор. Обычно видимое увеличение М выражают отношением M = tgb /tga , где a - угол, под которым наблюдатель видит предмет невооруженным глазом, а b - угол, под которым глаз наблюдателя видит предмет через прибор.

Основной частью любой оптической системы является линза. Линзы входят в состав практически всех оптических приборов.

Линза оптически прозрачное тело, ограниченное двумя сферическими поверхностями.

Если толщина самой линзы мала по сравнению с радиусами кривизны сферических поверхностей, то линзу называют тонкой.

Линзы бывают собирающими и рассеивающими . Собирающая линза в середине толще, чем у краев, рассеивающая линза, наоборот, в средней части тоньше.

Виды линз:

    • выпуклые:
      • двояковыпуклые (1)
      • плосковыпуклые (2)
      • вогнуто-выпуклые (3)
  • вогнутые:
    • двояковогнутые (4)
    • плосковогнутые (5)
    • выпукло-вогнутые (6)

Основные обозначения в линзе:

Прямая, проходящая через центры кривизны O 1 и O 2 сферических поверхностей, называется главной оптической осью линзы .

В случае тонких линз приближенно можно считать, что главная оптическая ось пересекается с линзой в одной точке, которую принято называть оптическим центром линзы O . Луч света проходит через оптический центр линзы, не отклоняясь от первоначального направления.

Оптический центр линзы – точка, сквозь которую световые лучи проходят не преломляясь в линзе.

Главная оптическая ось – прямая, проходящая через оптический центр линзы, перпендикулярно линзе.

Все прямые, проходящие через оптический центр, называются побочными оптическими осями .

Если на линзу направить пучок лучей, параллельных главной оптической оси, то после прохождения через линзу лучи (или их продолжения) соберутся в одной точке F, которая называется главным фокусом линзы. У тонкой линзы имеются два главных фокуса, расположенных симметрично на главной оптической оси относительно линзы. У собирающих линз фокусы действительные, у рассеивающих – мнимые.

Пучки лучей, параллельных одной из побочных оптических осей, после прохождения через линзу также фокусируются в точку F", которая расположена при пересечении побочной оси с фокальной плоскостью Ф, то есть плоскостью, перпендикулярной главной оптической оси и проходящей через главный фокус.

Фокальная плоскость – прямая, перпендикулярная главной оптической оси линзы и проходящая через фокус линзы.

Расстояние между оптическим центром линзы O и главным фокусом F называется фокусным расстоянием . Оно обозначаетcя той же буквой F.

Преломление параллельного пучка лучей в собирающей линзе.

Преломление параллельного пучка лучей в рассеивающей линзе.

Точки O 1 и O 2 – центры сферических поверхностей, O 1 O 2 – главная оптическая ось, O – оптический центр, F – главный фокус, F" – побочный фокус, OF" – побочная оптическая ось, Ф – фокальная плоскость.

На чертежах тонкие линзы изображают в виде отрезка со стрелками:

собирающая: рассеивающая:

Основное свойство линз способность давать изображения предметов . Изображения бывают прямыми и перевернутыми , действительными и мнимыми , увеличенными и уменьшенными .

Положение изображения и его характер можно определить с помощью геометрических построений. Для этого используют свойства некоторых стандартных лучей, ход которых известен. Это лучи, проходящие через оптический центр или один из фокусов линзы, а также лучи, параллельные главной или одной из побочных оптических осей. Для построения изображения в линзе используют любые два из трех лучей:

    Луч, падающий на линзу параллельно оптической оси, после преломления идет через фокус линзы.

    Луч, проходящий через оптический центр линзы не преломляется.

    Луч, проходя через фокус линзы после преломления идет параллельно оптической оси.

Положение изображения и его характер (действительное или мнимое) можно также рассчитать с помощью формулы тонкой линзы. Если расстояние от предмета до линзы обозначить через d, а расстояние от линзы до изображения через f, то формулу тонкой линзы можно записать в виде:

Величину D, обратную фокусному расстоянию называют оптической силой линзы .

Единицей измерения оптической силы является диоптрия (дптр) . Диоптрия – оптическая сила линзы с фокусным расстоянием 1 м: 1 дптр = м –1

Фокусным расстояниям линз принято приписывать определенные знаки: для собирающей линзы F > 0, для рассеивающей F < 0.

Величины d и f также подчиняются определенному правилу знаков:
d > 0 и f > 0 – для действительных предметов (то есть реальных источников света, а не продолжений лучей, сходящихся за линзой) и изображений;
d < 0 и f < 0 – для мнимых источников и изображений.

Тонкие линзы обладают рядом недостатков, не позволяющих получать высококачественные изображения. Искажения, возникающие при формировании изображения, называются аберрациями . Главные из них – сферическая и хроматическая аберрации.

Сферическая аберрация проявляется в том, что в случае широких световых пучков лучи, далекие от оптической оси, пересекают ее не в фокусе. Формула тонкой линзы справедлива только для лучей, близких к оптической оси. Изображение удаленного точечного источника, создаваемое широким пучком лучей, преломленных линзой, оказывается размытым.

Хроматическая аберрация возникает вследствие того, что показатель преломления материала линзы зависит от длины волны света λ. Это свойство прозрачных сред называется дисперсией. Фокусное расстояние линзы оказывается различным для света с разными длинами волн, что приводит к размытию изображения при использовании немонохроматического света.

В современных оптических приборах применяются не тонкие линзы, а сложные многолинзовые системы, в которых удается приближенно устранить различные аберрации.

Формирование собирающей линзой действительного изображения предмета используется во многих оптических приборах, таких как фотоаппарат, проектор и т. д.

При желании создать качественный оптический прибор следует оптимизировать набор его основных характеристик - светосилы, разрешающей способности и увеличения. Нельзя сделать хороший, например, телескоп, добиваясь лишь большого видимого увеличения и оставляя малой светосилу (апертуру). У него будет плохое разрешение, так как оно прямо зависит от апертуры. Конструкции оптических приборов весьма разнообразны, и их особенности диктуются назначением конкретных устройств. Но при воплощении любой спроектированной оптической системы в готовый оптико-механический прибор необходимо расположить все оптические элементы в строгом соответствии с принятой схемой, надежно закрепить их, обеспечить точную регулировку положения подвижных деталей, разместить диафрагмы для устранения нежелательного фона рассеянного излучения. Нередко требуется выдерживать заданные значения температуры и влажности внутри прибора, сводить к минимуму вибрации, нормировать распределение веса, обеспечить отвод тепла от ламп и другого вспомогательного электрооборудования. Значение придается внешнему виду прибора и удобству обращения с ним.

Микроскоп, лупа, увеличительное стекло.

Если рассматривать через положительную (собирающую) линзу предмет, расположенный за линзой не дальше ее фокальной точки, то видно увеличенное мнимое изображение предмета. Такая линза представляет собой простейший микроскоп и называется лупой или увеличительным стеклом.

Из оптической схемы можно определить размер увеличенного изображения.

Когда глаз настроен на параллельный пучок света (изображение предмета находится на неопределенно большом расстоянии, а это означает, что предмет расположен в фокальной плоскости линзы), видимое увеличение M можно определить из соотношения: M = tgb /tga = (H/f)/(H/v) = v/f, где f - фокусное расстояние линзы, v - расстояние наилучшего зрения, т.е. наименьшее расстояние, на котором глаз хорошо видит при нормальной аккомодации. M увеличивается на единицу, когда глаз настраивается так, что мнимое изображение предмета оказывается на расстоянии наилучшего зрения. Способности к аккомодации у всех людей разные, с возрастом они ухудшаются; принято считать 25 см расстоянием наилучшего зрения нормального глаза. В поле зрения одиночной положительной линзы при удалении от ее оси резкость изображения быстро ухудшается из-за поперечных аберраций. Хотя и бывают лупы с увеличением в 20 крат, типичная их кратность от 5 до 10. Увеличение сложного микроскопа, именуемого обычно просто микроскопом, доходит до 2000 крат.

Телескоп.

Телескоп увеличивает видимые размеры удаленных предметов. В схему простейшего телескопа входят две положительные линзы.

Лучи от удаленного предмета, параллельные оси телескопа (лучи a и c на схеме), собираются в заднем фокусе первой линзы (объектива). Вторая линза (окуляр) удалена от фокальной плоскости объектива на свое фокусное расстояние, и лучи a и c выходят из нее вновь параллельно оси системы. Некоторый луч b, исходящий не из тех точек предмета, откуда пришли лучи a и c, падает под углом a к оси телескопа, проходит через передний фокус объектива и после него идет параллельно оси системы. Окуляр направляет его в свой задний фокус под углом b. Поскольку расстояние от переднего фокуса объектива до глаза наблюдателя пренебрежимо мало по сравнению с расстоянием до предмета, то из схемы можно получить выражение для видимого увеличения M телескопа: M = -tgb /tga = -F/f" (или F/f). Отрицательный знак показывает, что изображение перевернуто. В астрономических телескопах оно таким и остается; в телескопах для наблюдений за наземными объектами применяют оборачивающую систему, чтобы рассматривать нормальные, а не перевернутые изображения. В оборачивающую систему могут входить дополнительные линзы или, как в биноклях, призмы.

Бинокль .

Бинокулярный телескоп, обычно именуемый биноклем, представляет собой компактный прибор для наблюдений обоими глазами одновременно; его увеличение, как правило, от 6 до 10 крат. В биноклях используют пару оборачивающих систем (чаще всего - Порро), в каждую из которых входят две прямоугольные призмы (с основанием под 45°), ориентированные навстречу прямоугольными гранями.

Чтобы получить большое увеличение в широком поле зрения, свободном от аберраций объектива, и, следовательно, значительный угол обзора (6-9°), биноклю необходим очень качественный окуляр, более совершенный, чем телескопу с узким углом зрения. В окуляре бинокля предусмотрена фокусировка изображения, причем с коррекцией зрения, - его шкала размечена в диоптриях. Кроме того, в бинокле положение окуляра подстраивается под расстояние между глазами наблюдателя. Обычно бинокли маркируются в соответствии с их увеличением (в кратах) и диаметром объектива (в миллиметрах), например, 8*40 или 7*50.

Оптический прицел.

В качестве оптического прицела можно применить любой телескоп для наземных наблюдений, если в какой-либо плоскости его пространства изображений нанести четкие метки (сетки, марки), отвечающие заданному назначению. Типичное устройство многих военных оптических установок таково, что объектив телескопа открыто смотрит на цель, а окуляр находится в укрытии. Такая схема требует излома оптической оси прицела и применения призм для ее смещения; эти же призмы преобразуют перевернутое изображение в прямое. Системы со смещением оптической оси называются перископическими. Обычно оптический прицел рассчитывается так, что зрачок его выхода удален от последней поверхности окуляра на достаточное расстояние для предохранения глаза наводчика от ударов о край телескопа при отдаче оружия.

Дальномер.

Оптические дальномеры, с помощью которых измеряют расстояния до объектов, бывают двух типов: монокулярные и стереоскопические. Хотя они различаются конструктивными деталями, основная часть оптической схемы у них одинакова и принцип действия один: по известной стороне (базе) и двум известным углам треугольника определяется неизвестная его сторона. Два параллельно ориентированных телескопа, разнесенных на расстояние b (база), строят изображения одного и того же удаленного объекта так, что он кажется наблюдаемым из них в разных направлениях (базой может служить и размер цели). Если с помощью какого-нибудь приемлемого оптического устройства совместить поля изображений обоих телескопов так, чтобы их можно было рассматривать одновременно, окажется, что соответствующие изображения предмета пространственно разнесены. Существуют дальномеры не только с полным наложением полей, но и с половинным: верхняя половина пространства изображений одного телескопа объединяется с нижней половиной пространства изображений другого. В таких приборах с помощью подходящего оптического элемента проводится совмещение пространственно разнесенных изображений и по относительному сдвигу изображений определяется измеряемая величина. Часто в качестве сдвигающего элемента служит призма или комбинация призм.

МОНОКУЛЯРНЫЙ ДАЛЬНОМЕР. A - прямоугольная призма; B - пентапризмы; C - линзовые объективы; D - окуляр; E - глаз; P1 и P2 -неподвижные призмы; P3 - подвижная призма; I 1 и I 2 - изображения половин поля зрения

В схеме монокулярного дальномера, показанной на рисунке, эту функцию исполняет призма P3; она связана со шкалой, проградуированной в измеряемых расстояниях до объекта. Пентапризмы B используются как отражатели света под прямым углом, поскольку такие призмы всегда отклоняют падающий световой пучок на 90°, независимо от точности их установки в горизонтальной плоскости прибора. Изображения, создаваемые двумя телескопами, в стереоскопическом дальномере наблюдатель видит сразу обоими глазами. База такого дальномера позволяет наблюдателю воспринимать положение объекта объемно, на некоторой глубине в пространстве. В каждом телескопе имеется сетка с марками, соответствующими значениям дальности. Наблюдатель видит шкалу расстояний, уходящую в глубь изображаемого пространства, и по ней определяет удаленность объекта.

Осветительные и проекционные приборы. Прожекторы.

В оптической схеме прожектора источник света, например кратер дугового электрического разряда, находится в фокусе параболического отражателя. Лучи, исходящие из всех точек дуги, отражаются параболическим зеркалом почти параллельно друг другу. Пучок лучей немного расходится потому, что источником служит не светящаяся точка, а объем конечного размера.

Диаскоп.

В оптическую схему этого прибора, предназначенного для просмотра диапозитивов и прозрачных цветных кадров, входят две линзовые системы: конденсор и проекционный объектив. Конденсор равномерно освещает прозрачный оригинал, направляя лучи в проекционный объектив, который строит изображение оригинала на экране. В проекционном объективе предусматриваются фокусировка и замена его линз, что позволяет менять расстояние до экрана и размеры изображения на нем. Оптическая схема кинопроектора такая же.

СХЕМА ДИАСКОПА. A - диапозитив; B - линзовый конденсор; C - линзы проекционного объектива; D - экран; S - источник света

Спектральные приборы.

Основным элементом спектрального прибора может быть дисперсионная призма либо дифракционная решетка. В таком приборе свет сначала коллимируется, т.е. формируется в пучок параллельных лучей, затем разлагается в спектр, и, наконец, изображение входной щели прибора фокусируется на его выходную щель по каждой длине волны спектра.

Спектрометр.

В этом более или менее универсальном лабораторном приборе коллимирующая и фокусирующая системы могут поворачиваться относительно центра столика, на котором расположен элемент, разлагающий свет в спектр. На приборе имеются шкалы для отсчетов углов поворота, например дисперсионной призмы, и углов отклонения после нее разных цветовых составляющих спектра. По результатам таких отсчетов измеряются, например, показатели преломления прозрачных твердых тел.

Спектрограф.

Так называется прибор, в котором полученный спектр или его часть снимается на фотоматериал. Можно получить спектр от призмы из кварца (диапазон 210-800 нм), стекла (360-2500 нм) или каменной соли (2500-16000 нм). В тех диапазонах спектра, где призмы слабо поглощают свет, изображения спектральных линий в спектрографе получаются яркими. В спектрографах с дифракционными решетками последние выполняют две функции: разлагают излучение в спектр и фокусируют цветовые составляющие на фотоматериал; такие приборы применяют и в ультрафиолетовой области.

Фотоаппарат представляет собой замкнутую светонепроницаемую камеру. Изображение фотографируемых предметов создается на фотопленке системой линз, которая называется объективом. Специальный затвор позволяет открывать объектив на время экспозиции.

Особенностью работы фотоаппарата является то, что на плоской фотопленке должны получаться достаточно резкими изображения предметов, находящихся на разных расстояниях.

В плоскости фотопленки получаются резкими только изображения предметов, находящихся на определенном расстоянии. Наведение на резкость достигается перемещением объектива относительно пленки. Изображения точек, не лежащих в плоскости резкого наведения, получаются размытыми в виде кружков рассеяния. Размер d этих кружков может быть уменьшен путем диафрагмирования объектива, т.е. уменьшения относительного отверстия a / F. Это приводит к увеличению глубины резкости.

Объектив современной фотокамеры состоит из нескольких линз, объединенных в оптические системы (например, оптическая схема Тессар). Число линз в объективах самых простых фотокамер - от одной до трех, а в современных дорогих фотоаппаратах их бывает до десяти или даже восемнадцати.

Оптическая схема Тессар

Оптических систем в объективе может быть от двух до пяти. Практически все оптические схемы устроены и работают одинаково – они фокусируют проходящие через линзы лучи света на светочувствительной матрице.

Только от объектива зависит качество изображения на снимке, будет ли фотография резкой, не исказятся ли на снимке формы и линии, хорошо ли она передаст цвета - все это зависит от свойств объектива, поэтому объектив и является одним из самых важных элементов современной фотокамеры.

Линзы объектива делают из специальных сортов оптического стекла или оптической пластмассы. Создание линз одно из самых дорогостоящих операций создания фотокамеры. В сравнении стеклянных и пластмассовых линз стоит отметить, то пластмассовые линзы дешевле и легче. В настоящее время большинство объективов недорогих любительских компактных камер изготавливается из пластмассы. Но, такие объективы подвержены царапинам и не так долговечны, примерно через два-три года они мутнеют, и качество фотографий оставляет желать лучшего. Оптика камер подороже изготавливается из оптического стекла.

В настоящее время большинство объективов компактных фотокамер изготавливается из пластмассы.

Между собой линзы объектива склеивают или соединяют при помощи очень точно рассчитанных металлических оправ. Склейку объективов можно встретить намного чаще, нежели металлические оправы.

Проекционный аппарат предназначен для получения крупномасштабных изображений. Объектив O проектора фокусирует изображение плоского предмета (диапозитив D) на удаленном экране Э. Система линз K, называемая конденсором, предназначена для того, чтобы сконцентрировать свет источника S на диапозитиве. На экране Э создается действительное увеличенное перевернутое изображение. Увеличение проекционного аппарата можно менять, приближая или удаляя экран Э с одновременным изменением расстояния между диапозитивом D и объективом O.

Линзой называется оптическая деталь, ограниченная двумя преломляющими поверхностями, являющимися поверхностями тел вращения, причем одна из них может быть плоской. Обычно линзы бывают круглой формы, но могут также иметь прямоугольную, квадратную или какую-либо другую конфигурацию. Как правило, преломляющие поверхности линзы являются сферическими. Применяются также асферические поверхности, которые могут иметь форму поверхностей вращения эллипса, гиперболы, параболы и кривых высшего порядка. Кроме того, существуют линзы, поверхности которых представляют собой часть боковой поверхности цилиндра, называемые цилиндрическими. Применяются также торические линзы с поверхностями, имеющими различную кривизну по двум взаимно перпендикулярным направлениям.

В качестве, отдельных оптических деталей линзы почти не применяются в оптических системах за исключением простых луп и полевых линз (коллективов). Обычно они используются в различных сложных комбинациях, например, склеенных из двух или трех линз и наборов из ряда отдельных и склеенных линз.

В зависимости от форм различают собирательные (положительные) и рассеивающие (отрицательные) линзы. К группе собирательных линз обычно относят линзы, у которых середина толще их краёв, а к группе рассеивающих -- линзы, края которых толще середины. Следует отметить, что это верно, только если показатель преломления у материала линзы больше, чем у окружающей среды. Если показатель преломления линзы меньше, ситуация будет обратной. Например, пузырек воздуха в воде -- двояковыпуклая рассеивающая линза.

Линзы характеризуются, как правило, своей оптической силой (измеряется в диоптриях), или фокусным расстоянием, а также апертурой. Для построения оптических приборов с исправленной оптической аберрацией (прежде всего -- хроматической, обусловленной дисперсией света, -- ахроматы и апохроматы) важны и иные свойства линз/их материалов, например, коэффициент преломления, коэффициент дисперсии, коэффициент пропускания материала в выбранном оптическом диапазоне.

Иногда линзы/линзовые оптические системы (рефракторы) специально рассчитываются на использование в средах с относительно высоким коэффициентом преломления.

Виды линз

Собирательные:

1 -- двояковыпуклая

2 -- плоско-выпуклая

3 -- вогнуто-выпуклая (положительный мениск)

Рассеивающие:

4 -- двояковогнутая

5 -- плоско-вогнутая

6 -- выпукло-вогнутая (отрицательный мениск)

Выпукло-вогнутая линза называется мениском и может быть собирательной (утолщается к середине) или рассеивающей (утолщается к краям). Мениск, у которого радиусы поверхностей равны, имеет оптическую силу, равную нулю (применяется для коррекции дисперсии или как покровная линза). Так, линзы очков для близоруких -- как правило, отрицательные мениски. Отличительным свойством собирательной линзы является способность собирать падающие на её поверхность лучи в одной точке, расположенной по другую сторону линзы.


Основные элементы линзы

NN -- главная оптическая ось -- прямая линия, проходящая через центры сферических поверхностей, ограничивающих линзу; O -- оптический центр -- точка, которая у двояковыпуклых или двояковогнутых (с одинаковыми радиусами поверхностей) линз находится на оптической оси внутри линзы (в её центре).

Если на некотором расстоянии перед собирательной линзой поместить светящуюся точку S, то луч света, направленный по оси, пройдёт через линзу не преломившись, а лучи, проходящие не через центр, будут преломляться в сторону оптической оси и пересекутся на ней в некоторой точке F, которая и будет изображением точки S. Эта точка носит название сопряжённого фокуса, или просто фокуса.

Если на линзу будет падать свет от очень удаленного источника, лучи которого можно представить идущими параллельным пучком, то по выходе из неё лучи преломятся под большим углом и точка F переместится на оптической оси ближе к линзе. При данных условиях точка пересечения лучей, вышедших из линзы, называется главным фокусом F", а расстояние от центра линзы до главного фокуса -- главным фокусным расстоянием.

Лучи, падающие на рассеивающую линзу, по выходе из неё будут преломляться в сторону краёв линзы, то есть рассеиваться. Если эти лучи продолжить в обратном направлении так, как показано на рисунке пунктирной линией, то они сойдутся в одной точке F, которая и будет фокусом этой линзы. Этот фокус будет мнимым.


Сказанное о фокусе на главной оптической оси в равной степени относится и к тем случаям, когда изображение точки находится на побочной или наклонной оптической оси, т. е. линии, проходящей через центр линзы под углом к главной оптической оси. Плоскость, перпендикулярная главной оптической оси, расположенная в главном фокусе линзы, называется главной фокальной плоскостью, а в сопряжённом фокусе -- просто фокальной плоскостью.

Собирательные линзы могут быть направлены к предмету любой стороной, вследствие чего лучи по прохождении через линзу могут собираться как с одной, так и с другой её стороны. Таким образом, линза имеет два фокуса -- передний и задний. Расположены они на оптической оси по обе стороны линзы.

ЛИНЗА

(нем. Linse, от лат. lens - чечевица), прозрачное тело, ограниченное двумя поверхностями, преломляющими световые лучи, способное формировать оптич. изображения предметов, светящихся собственным или отражённым светом. Л. явл. одним из осн. элементов оптич. систем. Наиболее употребительны Л., обе поверхности к-рых обладают общей осью симметрии, а из них - Л. со сферич. поверхностями, изготовление к-рых наиболее просто. Менее распространены Л. с двумя взаимно перпендикулярными плоскостями симметрии; их поверхности цилиндрич. или тороидальные. Таковы Л. в очках, предписываемых при астигматизме глаза, Л. для анаморфотных насадок и т. д.

Материалом для Л. обычно служит оптич. и органич. стекло. Спец. Л., предназначенные для работы в УФ области спектра, изготовляют из кристаллов кварца, флюорита, фтористого лития и др., в ИК - из особых сортов стекла, кремния, германия, флюорита, фтористого лития, йодистого цезия и др.

Описывая оптич. св-ва осесимметричной Л., чаще всего рассматривают лучи, падающие на неё под малым углом к оси, т. н. параксиальный пучок лучен.

Действие Л. на эти лучи определяется положением её кардинальных точек - т. н, главных точек Н и Н", в к-рых пересекаются с осью главные плоскости Л., а также переднего и заднего главных фокусов F и F" (рис. 1). Отрезки HF=f и H"F"=f наз. фокусными расстояниями Л. (если среды, с к-рыми граничит Л., обладают одинаковыми показателями преломления, всегда f=f"); точки пересечения О и О" поверхностей Л. с осью наз. её вершинами, а расстояния между вершинами - толщиной Л. d.

Если направления фокусного расстояния совпадают с направлением лучей света, то его считают положительным, так, напр., на рис. 1 лучи проходят через Л. направо и так же ориентирован отрезок Н"F". Поэтому здесь f">0, а f

Л. изменяют направления падающих на неё лучей. Если Л. преобразует параллельный пучок в сходящийся, её называют собирающей; если параллельный пучок превращается в расходящийся, Л. называют рассеивающей. В главном фокусе F" собирающей Л. пересекаются лучи, к-рые до преломления были параллельны её оси. Для такой Л. f" всегда положительно. В рассеивающей Л. F" - точка пересечения не самих лучей, а их воображаемых продолжений в сторону, противоположную направлению распространения света. Поэтому для них всегда f"

Мерой преломляющего действия Л. служит её Ф - величина, обратная фокусному расстоянию (Ф=1/f") и измеряемая в диоптриях (м-1). У собирающих Л. Ф>0, поэтому их ещё именуют положительными, рассеивающие Л. (Ф фокусное расстояние равно бесконечности). Они не собирают и не рассеивают лучей, но создают аберрации (см. АБЕРРАЦИИ ОПТИЧЕСКИХ СИСТЕМ) и применяются в зеркально-линзовых (а иногда и в линзовых) объективах как компенсаторы аберраций.

Все параметры, определяющие оптич. св-ва Л., ограниченной сферич. поверхностями, могут быть выражены через радиусы кривизны r1 и r2 её поверхностей, толщину Л. по оси d и n её материала. Напр., оптич. и фокусное расстояние Л. задаются соотношением (верным лишь для параксиальных лучей) :

Радиусы r1 и r2 считаются положительными, если направление от вершин Л. до центра соответствующей поверхности совпадает с направлением лучей (на рис. 1 r1=OF">0, r2=O"F

Первые три - положительны, последние три - отрицательны. Л. наз. тонкой, если её толщина d мала по сравнению с r1 и r2. Достаточно точное выражение для оптич. силы такой Л. получают и без учёта второго члена в (1).

Положение гл. плоскостей Л. относительно её вершин (расстояния ОН и О"Н") тоже можно определить, зная r1, r2, n и d. Расстояние между главными плоскостями мало зависит от формы и оптич. силы Л. и приблизительно равно d(n-1)/n. В случае тонкой Л. это расстояние мало и практически можно считать, что главные плоскости совпадают.

Когда положение кардинальных точек известно, положение оптич. изображения точки, даваемого Л. (рис. 1), определяется ф-лами:

где V - линейное увеличение Л. (см. УВЕЛИЧЕНИЕ ОПТИЧЕСКОЕ); l и l" - расстояния от точки и её изображения до оси (положительные, если они расположены выше оси); х - расстояние от переднего фокуса до точки; х" - расстояние от заднего фокуса до изображения. Если t и t" - расстояния от главных точек до плоскостей и изображения соответственно, то

т. к. x=t-f, x"=t"-f")

f"/t"+f/t=1 или 1/t"-1/t=1/f". (3)

В тонких Л. t и t" можно отсчитывать от соответствующих поверхностей Л.

Физический энциклопедический словарь. - М.: Советская энциклопедия . . 1983 .

ЛИНЗА

(нем. Linse, от лат. lens - чечевица) - простейший оптич. элемент, изготавливаемый из прозрачного материала, ограниченный двумя преломляющими поверхностями, имеющими общую ось либо две взаимно перпендикулярные плоскости симметрии. При изготовлении Л. для видимой области применяют оптическое стекло или органическое стекло (массовое тиражирование непрецизионных деталей), в УФ-диапазоне - , флюорит и др., в ИК-диапазоне - спец. сорта стёкол, германий, ряд солей и т. д.

Рабочие поверхности Л. обычно имеют сферич. форму, реже - цилиндрическую, тороидальную, конусообразную или с заданными небольшими отступлениями от сферы (асферическую). Л. со сферич. поверхностями наиб. просты в изготовлении и являются осн. элементами большинства оптич. систем.

В параксиальном приближении (углы между лучами и оптич. осью столь малы, что можно заменить sinи на свойства Л. со сферич. поверхностями могут быть однозначно охарактеризованы положением главных плоскостей и оптической силой Ф, представляющей собой выражаемую в диоптриях величину, обратную фокусному расстоянию (в м). Связь этих характеристик с геом. параметрами Л. ясны из рис., в к-ром для наглядности углы наклона лучей изображены преувеличенно большими. Расстояния от первой по ходу лучей поверхности линзы до первой гл. плоскости Я и от второй поверхности до второй гл. плоскости H " равны соответственно

S 1, 2

Фокусное расстояние от H до переднего фокуса (F)f = -1/Ф, от до заднего фокуса I оптич. сила Л., являющаяся мерой её преломляющего действия, равна

Здесь п - показатель преломления вещества Л. (или отношение этого показателя к показателю преломления окружающей среды, если последний 1), d - измеренная вдоль оси толщина Л., r 1 и r 2 - радиусы кривизны её поверхностей (считаются положительными, если центры кривизны расположены дальше по ходу лучей; так, у изображённой на рис. двояковыпуклой Л. r 1 >0, r 2 <0), расстояния отсчитываются вдоль направления распространения света.

Способ построения и расчёта траекторий проходящих через Л. меридиональных (лежащих в осевой плоскости) лучей с использованием гл. плоскостей ясен из рис. После прохождения Л. кажется исходящим из точки на удалённой от оси на то же расстояние h, что и точка пересечения исходного луча с Я. Угол между лучом и осью изменяется на Для нахождения траектории произвольного немеридионального луча последний проецируется на две взаимно перпендикулярные осевые плоскости. Каждая проекция является по существу меридиональным лучом и ведёт себя указанным выше образом.

Положение даваемого Л. изображения точки определяется ф-лами

где l и - расстояния от гл. плоскостей до плоскостей предмета и изображения соответственно (рис.), b и - расстояния точки и её изображения от оси (отсчитываемые вверх).


Если Л. наз. положительной или собирающей, при - отрицательной или рассеивающей; линзы с Ф=0 наз. афокальными и используются гл. обр. для исправления аберраций др. оптич. элементов. Положительные Л. дают действительные изображения всех действительных объектов, находящихся до переднего фокуса (на рис.- левее F), и всех мнимых объектов, находящихся за Л. Рассеивающие Л. дают расположенное между Л. и передним фокусом прямое, мнимое, уменьшенное изображение действит. объектов.

Расстояние между гл. плоскостями Л. почти не зависит от её оптич. силы и формы и примерно равно d (1-1/n ). Когда пренебрежимо мало по сравнению с Л. наз. тонкой. У тонких Л. знак оптич. силы Ф совпадает со знаком разности 1/r 1 -1/r 2 ; при этом толщина собирающих Л. по мере удаления от оси уменьшается, а рассеивающих - возрастает. Обе гл. плоскости тонких Л. можно считать совпадающими с плоскостью Л. и отсчитывать введённые выше расстояния /,l, прямо от последней. Чёткой границы между толстыми Л. (когда нельзя пренебречь) и тонкими не существует - всё зависит от конкретных применений.

Для преобразования высококогерентных световых пучков (обычно лазерного происхождения) используются преим. тонкие Л. Их часто наз. квадратичными фазовыми корректорами: при прохождении когерентного пучка через тонкую Л. к распределению фазы по его сечению добавляется величина где k = - волновой вектор, = ( п- 1) - вносимая Л. дополнит. , являющаяся квадратичной ф-цией удаления r от оси. Распределение комплексной амплитуды поля в фокальной плоскости Л. с точностью до фазового множителя является фурье-образом распределения амплитуды поля перед Л., вычисленным для пространственных частот (х, у - поперечные координаты на фокальной плоскости). Распределение интенсивности в той же плоскости подобно угл. распределению излучения с коэф. Поэтому Л. широко применяются в системах пространственной фильтрации излучения, обычно представляющих собой комбинацию Л. с установленными в их фокальных плоскостях диафрагмами, растрами, и в устройствах для измерения угл. излучения.

Л. обладают всеми аберрациями, присущими цент-риров. оптич. системам (см. Аберрации оптических систем ). Проблема аберраций особенно важна при использовании широкополосных и обладающих большими угл. апертурами световых пучков обычных (некогерентных) источников. Сферич. и хроматич. аберрации, а также могут быть в значит. степени исправлены путём комбинирования двух Л. разл. формы и из материалов с разл. дисперсией. Такие двухлинзовые системы широко используются в качестве объективов для зрительных труб и т. п. Иногда сферич. аберрации уничтожаются с помощью Л. с асферической, в частности параболоидальной, формой поверхности.

Для коррекции разл. дефектов глаза применяются Л. не только со сферическими, но также с цилиндрич. и торич. поверхностями. Цилиндрич. Л. сравнительно часто используются в тех случаях, когда изображение точечного источника должно быть "растянуто" в полосу или линию (напр., в спектральных приборах).

Лит.: Борн М., Вольф Э., Основы оптики, пер. с англ., 2 изд., М., 1973; Гудмен Д ж., Введение в Фурье-оптику, пер. с англ.. М.. 1970. Ю. А . Ананьев.

Физическая энциклопедия. В 5-ти томах. - М.: Советская энциклопедия . Главный редактор А. М. Прохоров . 1988 .

Рассказать друзьям