Наибольшая разность прогрессии. Как найти разность арифметической прогрессии: формулы и примеры решений

💖 Нравится? Поделись с друзьями ссылкой

Задачи по арифметической прогрессии существовали уже в глубокой древности. Они появлялись и требовали решения, поскольку имели практическую необходимость.

Так, в одном из папирусов Древнего Египта, имеющем математическое содержание, - папирусе Райнда (XIX век до нашей эры) - содержится такая задача: раздели десять мер хлеба на десять человек, при условии если разность между каждым из них составляет одну восьмую меры».

И в математических трудах древних греков встречаются изящные теоремы, имеющие отношение к арифметической прогрессии. Так, Гипсикл Александрийский (II век составивший немало интересных задач и добавивший четырнадцатую книгу к «Началам» Евклида, сформулировал мысль: «В арифметической прогрессии, имеющей четное число членов, сумма членов 2-ой половины больше суммы членов 1-ой на квадрату 1/2 числа членов».

Обозначается последовательность an. Числа последовательности называются ее членами и обозначаются обычно буквами с индексами, которые указывают порядковый номер этого члена (a1, a2, a3 … читается: «a 1-ое», «a 2-ое», «a 3-тье» и так далее).

Последовательность может быть бесконечной или конечной.

А что же такое арифметическая прогрессия? Под ней понимают получаемую сложением предыдущего члена (n) с одним и тем же числом d, являющимся разностью прогрессии.

Если d<0, то мы имеем убывающую прогрессию. Если d>0, то такая прогрессия считается возрастающей.

Арифметическая прогрессия называется конечной, если учитываются только несколько ее первых членов. При очень большом количестве членов это уже бесконечная прогрессия.

Задается любая арифметическая прогрессия следующей формулой:

an =kn+b, при этом b и k - некоторые числа.

Абсолютно верно утверждение, являющееся обратным: если последовательность задается подобной формулой, то это точно арифметическая прогрессия, которая имеет свойства:

  1. Каждый член прогрессии - среднее арифметическое предыдущего члена и последующего.
  2. Обратное: если, начиная со 2-ого, каждый член - среднее арифметическое предыдущего члена и последующего, т.е. если выполняется условие, то данная последовательность - арифметическая прогрессия. Это равенство одновременно является и признаком прогрессии, поэтому его, как правило, называют характеристическим свойством прогрессии.
    Точно так же верна теорема, которая отражает это свойство: последовательность - арифметическая прогрессия только в том случае, если это равенство верно для любого из членов последовательности, начиная со 2-ого.

Характеристическое свойство для четырёх любых чисел арифметической прогрессии может быть выражено формулой an + am = ak + al, если n + m = k + l (m, n, k - числа прогрессии).

В арифметической прогрессии любой необходимый (N-й) член найти можно, применяя следующую формулу:

К примеру: первый член (a1) в арифметической прогрессии задан и равен трём, а разность (d) равняется четырём. Найти нужно сорок пятый член этой прогрессии. a45 = 1+4(45-1)=177

Формула an = ak + d(n - k) позволяет определить n-й член арифметической прогрессии через любой ее k-тый член при условии, если он известен.

Сумма членов арифметической прогрессии (подразумевается 1-ые n членов конечной прогрессии) вычисляется следующим образом:

Sn = (a1+an) n/2.

Если известны и 1-ый член, то для вычисления удобна другая формула:

Sn = ((2a1+d(n-1))/2)*n.

Сумма арифметической прогрессии, которая содержит n членов, подсчитывается таким образом:

Выбор формул для расчетов зависит от условий задач и исходных данных.

Натуральный ряд любых чисел, таких как 1,2,3,...,n,...- простейший пример арифметической прогрессии.

Помимо арифметической прогрессии существует еще и геометрическая, которая обладает своими свойствами и характеристиками.

Начальный уровень

Арифметическая прогрессия. Подробная теория с примерами (2019)

Числовая последовательность

Итак, сядем и начнем писать какие-нибудь числа. Например:
Писать можно любые числа, и их может быть сколько угодно (в нашем случае их). Сколько бы чисел мы не написали, мы всегда можем сказать, какое из них первое, какое - второе и так далее до последнего, то есть, можем их пронумеровать. Это и есть пример числовой последовательности:

Числовая последовательность
Например, для нашей последовательности:

Присвоенный номер характерен только для одного числа последовательности. Иными словами, в последовательности нет трех вторых чисел. Второе число (как и -ное число) всегда одно.
Число с номером называется -ным членом последовательности.

Всю последовательность мы обычно называем какой-нибудь буквой (например,), и каждый член этой последовательности - той же буквой с индексом, равным номеру этого члена: .

В нашем случае:

Допустим, у нас есть числовая последовательность, в которой разница между соседствующими числами одинакова и равна.
Например:

и т.д.
Такая числовая последовательность называется арифметической прогрессией.
Термин «прогрессия» был введен римским автором Боэцием еще в 6 веке и понимался в более широком смысле, как бесконечная числовая последовательность. Название «арифметическая» было перенесено из теории непрерывных пропорций, которыми занимались древние греки.

Это числовая последовательность, каждый член которой равен предыдущему, сложенному с одним и тем же числом. Это число называется разностью арифметической прогрессии и обозначается.

Попробуй определить, какие числовые последовательности являются арифметической прогрессией, а какие нет:

a)
b)
c)
d)

Разобрался? Сравним наши ответы:
Является арифметической прогрессией - b, c.
Не является арифметической прогрессией - a, d.

Вернемся к заданной прогрессии () и попробуем найти значение ее -го члена. Существует два способа его нахождения.

1. Способ

Мы можем прибавлять к предыдущему значению числа прогрессии, пока не дойдем до -го члена прогрессии. Хорошо, что суммировать нам осталось немного - всего три значения:

Итак, -ой член описанной арифметической прогрессии равен.

2. Способ

А что если нам нужно было бы найти значение -го члена прогрессии? Суммирование заняло бы у нас не один час, и не факт, что мы не ошиблись бы при сложении чисел.
Разумеется, математики придумали способ, при котором не нужно прибавлять разность арифметической прогрессии к предыдущему значению. Присмотрись внимательно к нарисованному рисунку… Наверняка ты уже заметил некую закономерность, а именно:

Например, посмотрим, из чего складывается значение -го члена данной арифметической прогрессии:


Иными словами:

Попробуй самостоятельно найти таким способом значение члена данной арифметической прогрессии.

Рассчитал? Сравни свои записи с ответом:

Обрати внимание, что у тебя получилось точно такое же число, как и в предыдущем способе, когда мы последовательно прибавляли к предыдущему значению членов арифметической прогрессии.
Попробуем «обезличить» данную формулу - приведем ее в общий вид и получим:

Уравнение арифметической прогрессии.

Арифметические прогрессии бывают возрастающие, а бывают убывающие.

Возрастающие - прогрессии, в которых каждое последующее значение членов больше предыдущего.
Например:

Убывающие - прогрессии, в которых каждое последующее значение членов меньше предыдущего.
Например:

Выведенная формула применяется в расчете членов как в возрастающих, так и в убывающих членах арифметической прогрессии.
Проверим это на практике.
Нам дана арифметическая прогрессия, состоящая из следующих чисел: Проверим, какое получится -ое число данной арифметической прогрессии, если при его расчете использовать нашу формулу:


Так как, то:

Таким образом, мы убедились, что формула действует как в убывающей, так и в возрастающей арифметической прогрессии.
Попробуй самостоятельно найти -ой и -ый члены этой арифметической прогрессии.

Сравним полученные результаты:

Свойство арифметической прогрессии

Усложним задачу - выведем свойство арифметической прогрессии.
Допустим, нам дано такое условие:
- арифметическая прогрессия, найти значение.
Легко, скажешь ты и начнешь считать по уже известной тебе формуле:

Пусть, а, тогда:

Абсолютно верно. Получается, мы сначала находим, потом прибавляем его к первому числу и получаем искомое. Если прогрессия представлена маленькими значениями, то ничего сложного в этом нет, а если нам в условии даны числа? Согласись, есть вероятность ошибиться в вычислениях.
А теперь подумай, можно ли решить эту задачу в одно действие с использованием какой-либо формулы? Конечно да, и именно ее мы попробуем сейчас вывести.

Обозначим искомый член арифметической прогрессии как, формула его нахождения нам известна - это та самая формула, выведенная нами в начале:
, тогда:

  • предыдущий член прогрессии это:
  • последующий член прогрессии это:

Просуммируем предыдущий и последующий члены прогрессии:

Получается, что сумма предыдущего и последующего членов прогрессии - это удвоенное значение члена прогрессии, находящегося между ними. Иными словами, чтобы найти значение члена прогрессии при известных предыдущих и последовательных значениях, необходимо сложить их и разделить на.

Все верно, мы получили это же число. Закрепим материал. Посчитай значение для прогрессии самостоятельно, ведь это совсем несложно.

Молодец! Ты знаешь о прогрессии почти все! Осталось узнать только одну формулу, которую по легендам без труда вывел для себя один из величайших математиков всех времен, «король математиков» - Карл Гаусс...

Когда Карлу Гауссу было 9 лет, учитель, занятый проверкой работ учеников других классов, задал на уроке следующую задачу: «Сосчитать сумму всех натуральных чисел от до (по другим источникам до) включительно». Каково же было удивление учителя, когда один из его учеников (это и был Карл Гаусс) через минуту дал правильный ответ на поставленную задачу, при этом, большинство одноклассников смельчака после долгих подсчетов получили неправильный результат…

Юный Карл Гаусс заметил некоторую закономерность, которую без труда заметишь и ты.
Допустим, у нас есть арифметическая прогрессия, состоящая из -ти членов: Нам необходимо найти сумму данных членов арифметической прогрессии. Конечно, мы можем вручную просуммировать все значения, но что делать, если в задании необходимо будет найти сумму ее членов, как это искал Гаусс?

Изобразим заданную нам прогрессию. Присмотрись внимательно к выделенным числам и попробуй произвести с ними различные математические действия.


Попробовал? Что ты заметил? Правильно! Их суммы равны


А теперь ответь, сколько всего наберется таких пар в заданной нам прогрессии? Конечно, ровно половина всех чисел, то есть.
Исходя из того, что сумма двух членов арифметической прогрессии равна, а подобных равных пар, мы получаем, что общая сумма равна:
.
Таким образом, формула для суммы первых членов любой арифметической прогрессии будет такой:

В некоторых задачах нам неизвестен -й член, но известна разность прогрессии. Попробуй подставить в формулу суммы, формулу -го члена.
Что у тебя получилось?

Молодец! Теперь вернемся к задаче, которую задали Карлу Гауссу: посчитай самостоятельно, чему равна сумма чисел, начиная от -го, и сумма чисел начиная от -го.

Сколько у тебя получилось?
У Гаусса получилось, что сумма членов равна, а сумма членов. Так ли ты решал?

На самом деле формула суммы членов арифметической прогрессии была доказана древнегреческим ученым Диофантом еще в 3 веке, да и на протяжении всего этого времени остроумные люди вовсю пользовались свойствами арифметической прогрессии.
Например, представь Древний Египет и самую масштабную стройку того времени - строительство пирамиды… На рисунке представлена одна ее сторона.

Где же здесь прогрессия скажешь ты? Посмотри внимательно и найди закономерность в количестве песчаных блоков в каждом ряде стены пирамиды.


Чем не арифметическая прогрессия? Посчитай, сколько всего блоков необходимо для строительства одной стены, если в основание кладется блочных кирпичей. Надеюсь, ты не будешь считать, водя пальцем по монитору, ты же помнишь последнюю формулу и все, что мы говорили об арифметической прогрессии?

В данном случае прогрессия выглядит следующим образом: .
Разность арифметической прогрессии.
Количество членов арифметической прогрессии.
Подставим в последние формулы наши данные (посчитаем количество блоков 2 способами).

Способ 1.

Способ 2.

А теперь можно и на мониторе посчитать: сравни полученные значения с тем количеством блоков, которое есть в нашей пирамиде. Сошлось? Молодец, ты освоил сумму -ных членов арифметической прогрессии.
Конечно, из блоков в основании пирамиду не построишь, а вот из? Попробуй рассчитать, сколько необходимо песчаных кирпичей, чтобы построить стену с таким условием.
Справился?
Верный ответ - блоков:

Тренировка

Задачи:

  1. Маша приходит в форму к лету. Ежедневно она увеличивает количество приседаний на. Сколько раз будет приседать Маша через недели, если на первой тренировке она сделала приседаний.
  2. Какова сумма всех нечетных чисел, содержащихся в.
  3. Лесорубы при хранении бревен укладывают их таким образом, что каждый верхний слой содержит на одно бревно меньше, чем предыдущий. Сколько бревен находится в одной кладке, если основанием кладки служат бревен.

Ответы:

  1. Определим параметры арифметической прогрессии. В данном случае
    (недели = дней).

    Ответ: Через две недели Маша должна приседать раз в день.

  2. Первое нечетное число, последнее число.
    Разность арифметической прогрессии.
    Количество нечетных чисел в - половина, однако, проверим этот факт, используя формулу нахождения -ного члена арифметической прогрессии:

    В числах действительно содержится нечетных чисел.
    Имеющиеся данные подставим в формулу:

    Ответ: Сумма всех нечетных чисел, содержащихся в, равна.

  3. Вспомним задачу про пирамиды. Для нашего случая, a , так как каждый верхний слой уменьшается на одно бревно, то всего в кучке слоев, то есть.
    Подставим данные в формулу:

    Ответ: В кладке находится бревен.

Подведем итоги

  1. - числовая последовательность, в которой разница между соседними числами одинакова и равна. Она бывает возрастающей и убывающей.
  2. Формула нахождения -го члена арифметической прогрессии записывается формулой - , где - количество чисел в прогрессии.
  3. Свойство членов арифметической прогрессии - - где - количество чисел в прогрессии.
  4. Сумму членов арифметической прогрессии можно найти двумя способами:

    , где - количество значений.

АРИФМЕТИЧЕСКАЯ ПРОГРЕССИЯ. СРЕДНИЙ УРОВЕНЬ

Числовая последовательность

Давай сядем и начнем писать какие-нибудь числа. Например:

Писать можно любые числа, и их может быть сколько угодно. Но всегда можно сказать, какое из них первое, какое - второе и так далее, то есть, можем их пронумеровать. Это и есть пример числовой последовательности.

Числовая последовательность - это множество чисел, каждому из которых можно присвоить уникальный номер.

Другими словами, каждому числу можно поставить в соответствие некое натуральное число, причем единственное. И этот номер мы не присвоим больше никакому другому числу из данного множества.

Число с номером называется -ым членом последовательности.

Всю последовательность мы обычно называем какой-нибудь буквой (например,), и каждый член этой последовательности - той же буквой с индексом, равным номеру этого члена: .

Очень удобно, если -ый член последовательности можно задать какой-нибудь формулой. Например, формула

задает последовательность:

А формула - такую последовательность:

Например, арифметической прогрессией является последовательность (первый член здесь равен, а разность). Или (, разность).

Формула n-го члена

Рекуррентной мы называем такую формулу, в которой чтобы узнать -ый член, нужно знать предыдущий или несколько предыдущих:

Чтобы найти по такой формуле, например, -ый член прогрессии, нам придется вычислить предыдущие девять. Например, пусть. Тогда:

Ну что, ясно теперь какая формула?

В каждой строке мы к прибавляем, умноженное на какое-то число. На какое? Очень просто: это номер текущего члена минус:

Теперь намного удобнее, правда? Проверяем:

Реши сам:

В арифметической прогрессии найти формулу n-го члена и найти сотый член.

Решение:

Первый член равен. А чему равна разность? А вот чему:

(она ведь потому и называется разностью, что равна разности последовательных членов прогрессии).

Итак, формула:

Тогда сотый член равен:

Чему равна сумма всех натуральных чисел от до?

По легенде, великий математик Карл Гаусс, будучи 9-летним мальчиком, посчитал эту сумму за несколько минут. Он заметил, что сумма первого и последнего числа равна, сумма второго и предпоследнего - тоже, сумма третьего и 3-го с конца - тоже, и так далее. Сколько всего наберется таких пар? Правильно, ровно половина количества всех чисел, то есть. Итак,

Общая формула для суммы первых членов любой арифметической прогрессии будет такой:

Пример:
Найдите сумму всех двузначных чисел, кратных.

Решение:

Первое такое число - это. Каждое следующее получается добавлением к предыдущему числа. Таким образом, интересующие нас числа образуют арифметическую прогрессию с первым членом и разностью.

Формула -го члена для этой прогрессии:

Сколько членов в прогрессии, если все они должны быть двузначными?

Очень легко: .

Последний член прогрессии будет равен. Тогда сумма:

Ответ: .

Теперь реши сам:

  1. Ежедневно спортсмен пробегает на м больше, чем в предыдущий день. Сколько всего километров он пробежит за недели, если в первый день он пробежал км м?
  2. Велосипедист проезжает каждый день на км больше, чем в предыдущий. В первый день он проехал км. Сколько дней ему надо ехать, чтобы преодолеть км? Сколько километров он проедет за последний день пути?
  3. Цена холодильника в магазине ежегодно уменьшается на одну и ту же сумму. Определите, на сколько каждый год уменьшалась цена холодильника, если, выставленный на продажу за рублей, через шесть лет был продан за рублей.

Ответы:

  1. Здесь самое главное - распознать арифметическую прогрессию, и определить ее параметры. В данном случае, (недели = дней). Определить нужно сумму первых членов этой прогрессии:
    .
    Ответ:
  2. Здесь дано: , надо найти.
    Очевидно, нужно использовать ту же формулу суммы, что и в предыдущей задаче:
    .
    Подставляем значения:

    Корень, очевидно, не подходит, значит, ответ.
    Посчитаем путь, пройденный за последний день с помощью формулы -го члена:
    (км).
    Ответ:

  3. Дано: . Найти: .
    Проще не бывает:
    (руб).
    Ответ:

АРИФМЕТИЧЕСКАЯ ПРОГРЕССИЯ. КОРОТКО О ГЛАВНОМ

Это числовая последовательность, в которой разница между соседними числами одинакова и равна.

Арифметическая прогрессия бывает возрастающей () и убывающей ().

Например:

Формула нахождения n-ого члена арифметической прогрессии

записывается формулой, где - количество чисел в прогрессии.

Свойство членов арифметической прогрессии

Оно позволяет легко найти член прогрессии, если известны его соседние члены - где - количество чисел в прогрессии.

Сумма членов арифметической прогрессии

Существует два способа нахождения суммы:

Где - количество значений.

Где - количество значений.

Кто-то к слову «прогрессия» относится настороженно, как к очень сложному термину из разделов высшей математики. А между тем самая простая арифметическая прогрессия - работа счётчика такси (где они ещё остались). И понять суть (а в математике нет ничего важнее, чем «понять суть») арифметической последовательности не так сложно, разобрав несколько элементарных понятий.

Математическая числовая последовательность

Числовой последовательностью принято именовать какой-либо ряд чисел, каждое из которых имеет свой номер.

а 1 - первый член последовательности;

а 2 - второй член последовательности;

а 7 - седьмой член последовательности;

а n - n-ный член последовательности;

Однако не любой произвольный набор цифр и чисел интересует нас. Наше внимание сосредоточим на числовой последовательности, у которой значение n-ного члена связано с его порядковым номером зависимостью, которую можно чётко сформулировать математически. Иными словами: численное значение n-ного номера является какой-либо функцией от n.

a - значение члена числовой последовательности;

n - его порядковый номер;

f(n) - функция, где порядковый номер в числовой последовательности n является аргументом.

Определение

Арифметической прогрессией принято именовать числовую последовательность, в которой каждый последующий член больше (меньше) предыдущего на одно и то же число. Формула n-ного члена арифметической последовательности выглядит следующим образом:

a n - значение текущего члена арифметической прогрессии;

a n+1 - формула следующего числа;

d - разность (определённое число).

Нетрудно определить, что если разность положительна (d>0), то каждый последующий член рассматриваемого ряда будет больше предыдущего и такая арифметическая прогрессия будет возрастающей.

На представленном ниже графике нетрудно проследить, почему числовая последовательность получила название «возрастающая».

В случаях, когда разность отрицательная (d<0), каждый последующий член по понятным причинам будет меньше предыдущего, график прогрессии станет «уходить» вниз, арифметическая прогрессия, соответственно, будет именоваться убывающей.

Значение заданного члена

Иногда бывает необходимо определить значение какого-либо произвольного члена a n арифметической прогрессии. Можно сделать это путём расчёта последовательно значений всех членов арифметической прогрессии, начиная с первого до искомого. Однако такой путь не всегда приемлем, если, например, необходимо отыскать значение пятитысячного или восьмимиллионного члена. Традиционный расчёт сильно затянется по времени. Однако конкретная арифметическая прогрессия может быть исследована с помощью определённых формул. Существует и формула n-ного члена: значение любого члена арифметической прогрессии может быть определено как сумма первого члена прогрессии с разностью прогрессии, умноженной на номер искомого члена, уменьшенный на единицу.

Формула универсальна для возрастающей и убывающей прогрессии.

Пример расчёта значения заданного члена

Решим следующую задачу на нахождение значения n-ного члена арифметической прогрессии.

Условие: имеется арифметическая прогрессия с параметрами:

Первый член последовательности равен 3;

Разность числового ряда равняется 1,2.

Задание: необходимо отыскать значение 214 члена

Решение: для определения значения заданного члена воспользуемся формулой:

а(n) = а1 + d(n-1)

Подставив в выражение данные из условия задачи имеем:

а(214) = а1 + d(n-1)

а(214) = 3 + 1,2 (214-1) = 258,6

Ответ: 214-ый член последовательности раве 258,6.

Преимущества такого способа расчёта очевидны - всё решение занимает не более 2 строчек.

Сумма заданного числа членов

Очень часто в заданном арифметическом ряду требуется определить сумму значений некоторого его отрезка. Для этого также нет необходимости вычислять значения каждого члена и затем суммировать. Такой способ применим, если число членов, сумму которых необходимо найти, невелико. В остальных случаях удобнее воспользоваться следующей формулой.

Сумма членов арифметической прогрессии от 1 до n равна сумме первого и n-ного членов, помноженной на номер члена n и делённой надвое. Если в формуле значение n-ного члена заменить на выражение из предыдущего пункта статьи, получим:

Пример расчёта

Для примера решим задачу со следующими условиями:

Первый член последовательности равен нулю;

Разность равняется 0,5.

В задаче требуется определить сумму членов ряда с 56-го по 101.

Решение. Воспользуемся формулой определения суммы прогрессии:

s(n) = (2∙a1 + d∙(n-1))∙n/2

Вначале определим сумму значений 101 члена прогрессии, подставив в формулу данные их условия нашей задачи:

s 101 = (2∙0 + 0,5∙(101-1))∙101/2 = 2 525

Очевидно, для того, чтобы узнать сумму членов прогрессии с 56-го по 101-й, необходимо от S 101 отнять S 55 .

s 55 = (2∙0 + 0,5∙(55-1))∙55/2 = 742,5

Таким образом сумма арифметической прогрессии для данного примера:

s 101 - s 55 = 2 525 - 742,5 = 1 782,5

Пример практического применения арифметической прогрессии

В конце статьи вернёмся к примеру арифметической последовательности, приведённому в первом абзаце - таксометр (счётчик автомобиля такси). Рассмотрим такой пример.

Посадка в такси (в которую входит 3 км пробега) стоит 50 рублей. Каждый последующий километр оплачивается из расчёта 22 руб./км. Расстояние поездки 30 км. Рассчитать стоимость поездки.

1. Отбросим первые 3 км, цена которых включена в стоимость посадки.

30 - 3 = 27 км.

2. Дальнейший расчет - не что иное как разбор арифметического числового ряда.

Номер члена - число км пробега (минус первые три).

Значение члена - сумма.

Первый член в данной задаче будет равен a 1 = 50 р.

Разность прогрессии d = 22 р.

интересующее нас число - значение (27+1)-ого члена арифметической прогрессии - показания счётчика в конце 27-го километра - 27,999… = 28 км.

a 28 = 50 + 22 ∙ (28 - 1) = 644

На формулах, описывающих те или иные числовые последовательности, построены расчёты календарных данных на сколь угодно длительный период. В астрономии в геометрической зависимости от расстояния небесного тела до светила находится длина орбиты. Кроме того, различные числовые ряды с успехом применяются в статистике и других прикладных разделах математики.

Другой вид числовой последовательности - геометрическая

Геометрическая прогрессия характеризуется большими, по сравнению с арифметической, темпами изменения. Не случайно в политике, социологии, медицине зачастую, чтобы показать большую скорость распространения того или иного явления, например заболевания при эпидемии, говорят, что процесс развивается в геометрической прогрессии.

N-ный член геометрического числового ряда отличается от предыдущего тем, что он умножается на какое-либо постоянное число - знаменатель, например первый член равен 1, знаменатель соответственно равен 2, тогда:

n=1: 1 ∙ 2 = 2

n=2: 2 ∙ 2 = 4

n=3: 4 ∙ 2 = 8

n=4: 8 ∙ 2 = 16

n=5: 16 ∙ 2 = 32,

b n - значение текущего члена геометрической прогрессии;

b n+1 - формула следующего члена геометрической прогрессии;

q - знаменатель геометрической прогрессии (постоянное число).

Если график арифметической прогрессии представляет собой прямую, то геометрическая рисует несколько иную картину:

Как и в случае с арифметической, геометрическая прогрессия имеет формулу значения произвольного члена. Какой-либо n-ный член геометрической прогрессии равен произведению первого члена на знаменатель прогрессии в степени n уменьшенного на единицу:

Пример. Имеем геометрическую прогрессию с первым членом равным 3 и знаменателем прогрессии, равным 1,5. Найдём 5-й член прогрессии

b 5 = b 1 ∙ q (5-1) = 3 ∙ 1,5 4 = 15,1875

Сумма заданного числа членов рассчитывается так же с помощью специальной формулы. Сумма n первых членов геометрической прогрессии равна разности произведения n- ного члена прогрессии на его знаменатель и первого члена прогрессии, делённой на уменьшенный на единицу знаменатель:

Если b n заменить пользуясь рассмотренной выше формулой, значение суммы n первых членов рассматриваемого числового ряда примет вид:

Пример. Геометрическая прогрессия начинается с первого члена, равного 1. Знаменатель задан равным 3. Найдём сумму первых восьми членов.

s8 = 1 ∙ (3 8 -1) / (3-1) = 3 280

И. В. Яковлев | Материалы по математике | MathUs.ru

Арифметическая прогрессия

Арифметическая прогрессия это специального вида последовательность. Поэтому прежде чем давать определение арифметической (а затем и геометрической) прогрессии, нам нужно вкратце обсудить важное понятие числовой последовательности.

Последовательность

Вообразите устройство, на экране которого высвечиваются одно за другим некоторые числа. Скажем, 2; 7; 13; 1; 6; 0; 3; : : : Такой набор чисел как раз и является примером последовательности.

Определение. Числовая последовательность это множество чисел, в котором каждому числу можно присвоить уникальный номер (то есть поставить в соответствие единственное натуральное число)1 . Число с номером n называется n-м членом последовательности.

Так, в приведённом выше примере первый номер имеет число 2 это первый член последовательности, который можно обозначить a1 ; номер пять имеет число 6 это пятый член последовательности, который можно обозначить a5 . Вообще, n-й член последовательности обозначается an (или bn , cn и т. д.).

Очень удобна ситуация, когда n-й член последовательности можно задать некоторой формулой. Например, формула an = 2n 3 задаёт последовательность: 1; 1; 3; 5; 7; : : : Формула an = (1)n задаёт последовательность: 1; 1; 1; 1; : : :

Не всякое множество чисел является последовательностью. Так, отрезок не последовательность; в нём содержится ¾слишком много¿ чисел, чтобы их можно было перенумеровать. Множество R всех действительных чисел также не является последовательностью. Эти факты доказываются в курсе математического анализа.

Арифметическая прогрессия: основные определения

Вот теперь мы готовы дать определение арифметической прогрессии.

Определение. Арифметическая прогрессия это последовательность, каждый член которой (начиная со второго) равен сумме предыдущего члена и некоторого фиксированного числа (называемого разностью арифметической прогрессии).

Например, последовательность 2; 5; 8; 11; : : : является арифметической прогрессией с первым членом 2 и разностью 3. Последовательность 7; 2; 3; 8; : : : является арифметической прогрессией с первым членом 7 и разностью 5. Последовательность 3; 3; 3; : : : является арифметической прогрессией с разностью, равной нулю.

Эквивалентное определение: последовательность an называется арифметической прогрессией, если разность an+1 an есть величина постоянная (не зависящая от n).

Арифметическая прогрессия называется возрастающей, если её разность положительна, и убывающей, если её разность отрицательна.

1 А вот более лаконичное определение: последовательность есть функция, определённая на множестве натуральных чисел. Например, последовательность действительных чисел есть функция f: N ! R.

По умолчанию последовательности считаются бесконечными, то есть содержащими бесконечное множество чисел. Но никто не мешает рассматривать и конечные последовательности; собственно, любой конечный набор чисел можно назвать конечной последовательностью. Например, конечная последовательность 1; 2; 3; 4; 5 состоит из пяти чисел.

Формула n-го члена арифметической прогрессии

Легко понять, что арифметическая прогрессия полностью определяется двумя числами: первым членом и разностью. Поэтому возникает вопрос: как, зная первый член и разность, найти произвольный член арифметической прогрессии?

Получить искомую формулу n-го члена арифметической прогрессии нетрудно. Пусть an

арифметическая прогрессия с разностью d. Имеем:

an+1 = an + d (n = 1; 2; : : :):

В частности, пишем:

a2 = a1 + d;

a3 = a2 + d = (a1 + d) + d = a1 + 2d;

a4 = a3 + d = (a1 + 2d) + d = a1 + 3d;

и теперь становится ясно, что формула для an имеет вид:

an = a1 + (n 1)d:

Задача 1. В арифметической прогрессии 2; 5; 8; 11; : : : найти формулу n-го члена и вычислить сотый член.

Решение. Согласно формуле (1 ) имеем:

an = 2 + 3(n 1) = 3n 1:

a100 = 3 100 1 = 299:

Свойство и признак арифметической прогрессии

Свойство арифметической прогрессии. В арифметической прогрессии an для любого

Иначе говоря, каждый член арифметической прогрессии (начиная со второго) является средним арифметическим соседних членов.

Доказательство. Имеем:

a n 1+ a n+1

(an d) + (an + d)

что и требовалось.

Более общим образом, для арифметической прогрессии an справедливо равенство

a n = a n k+ a n+k

при любом n > 2 и любом натуральном k < n. Попробуйте самостоятельно доказать эту формулу тем же самым приёмом, что и формулу (2 ).

Оказывается, формула (2 ) служит не только необходимым, но и достаточным условием того, что последовательность является арифметической прогрессией.

Признак арифметической прогрессии. Если для всех n > 2 выполнено равенство (2 ), то последовательность an является арифметической прогрессией.

Доказательство. Перепишем формулу (2 ) следующим образом:

a na n 1= a n+1a n:

Отсюда видно, что разность an+1 an не зависит от n, а это как раз и означает, что последовательность an есть арифметическая прогрессия.

Свойство и признак арифметической прогрессии можно сформулировать в виде одного утверждения; мы для удобства сделаем это для трёх чисел (именно такая ситуация часто встречается в задачах).

Характеризация арифметической прогрессии. Три числа a, b, c образуют арифметическую прогрессию тогда и только тогда, когда 2b = a + c.

Задача 2. (МГУ, экономич. ф-т, 2007) Три числа 8x, 3 x2 и 4 в указанном порядке образуют убывающую арифметическую прогрессию. Найдите x и укажите разность этой прогрессии.

Решение. По свойству арифметической прогрессии имеем:

2(3 x2 ) = 8x 4 , 2x2 + 8x 10 = 0 , x2 + 4x 5 = 0 , x = 1; x = 5:

Если x = 1, то получается убывающая прогрессия 8, 2, 4 с разностью 6. Если x = 5, то получается возрастающая прогрессия 40, 22, 4; этот случай не годится.

Ответ: x = 1, разность равна 6.

Сумма первых n членов арифметической прогрессии

Легенда гласит, что однажды учитель велел детям найти сумму чисел от 1 до 100 и сел спокойно читать газету. Однако не прошло и нескольких минут, как один мальчик сказал, что решил задачу. Это был 9-летний Карл Фридрих Гаусс, впоследствии один из величайших математиков в истории.

Идея маленького Гаусса была такова. Пусть

S = 1 + 2 + 3 + : : : + 98 + 99 + 100:

Запишем данную сумму в обратном порядке:

S = 100 + 99 + 98 + : : : + 3 + 2 + 1;

и сложим две этих формулы:

2S = (1 + 100) + (2 + 99) + (3 + 98) + : : : + (98 + 3) + (99 + 2) + (100 + 1):

Каждое слагаемое в скобках равно 101, а всего таких слагаемых 100. Поэтому

2S = 101 100 = 10100;

Мы используем эту идею для вывода формулы суммы

S = a1 + a2 + : : : + an + a n n: (3)

Полезная модификация формулы (3 ) получается, если в неё подставить формулу n-го члена an = a1 + (n 1)d:

2a1 + (n 1)d

Задача 3. Найти сумму всех положительных трёхзначных чисел, делящихся на 13.

Решение. Трёхзначные числа, кратные 13, образуют арифметическую прогрессию с первым членом 104 и разностью 13; n-й член этой прогрессии имеет вид:

an = 104 + 13(n 1) = 91 + 13n:

Давайте выясним, сколько членов содержит наша прогрессия. Для этого решим неравенство:

an 6 999; 91 + 13n 6 999;

n 6 908 13 = 6911 13 ; n 6 69:

Итак, в нашей прогрессии 69 членов. По формуле (4 ) находим искомую сумму:

S = 2 104 + 68 13 69 = 37674: 2

Сумма арифметической прогрессии.

Сумма арифметической прогрессии - штука простая. И по смыслу, и по формуле. Но задания по этой теме бывают всякие. От элементарных до вполне солидных.

Сначала разберёмся со смыслом и формулой суммы. А потом и порешаем. В своё удовольствие.) Смысл суммы прост, как мычание. Чтобы найти сумму арифметической прогрессии надо просто аккуратно сложить все её члены. Если этих членов мало, можно складывать безо всяких формул. Но если много, или очень много... сложение напрягает.) В этом случае спасает формула.

Формула суммы выглядит просто:

Разберёмся, что за буковки входят в формулу. Это многое прояснит.

S n - сумма арифметической прогрессии. Результат сложения всех членов, с первого по последний. Это важно. Складываются именно все члены подряд, без пропусков и перескоков. И, именно, начиная с первого. В задачках, типа найти сумму третьего и восьмого членов, или сумму членов с пятого по двадцатый - прямое применение формулы разочарует.)

a 1 - первый член прогрессии. Здесь всё понятно, это просто первое число ряда.

a n - последний член прогрессии. Последнее число ряда. Не очень привычное название, но, в применении к сумме, очень даже годится. Дальше сами увидите.

n - номер последнего члена. Важно понимать, что в формуле этот номер совпадает с количеством складываемых членов.

Определимся с понятием последнего члена a n . Вопрос на засыпку: какой член будет последним, если дана бесконечная арифметическая прогрессия?)

Для уверенного ответа нужно понимать элементарный смысл арифметической прогрессии и... внимательно читать задание!)

В задании на поиск суммы арифметической прогрессии всегда фигурирует (прямо или косвенно) последний член, которым следует ограничиться. Иначе конечной, конкретной суммы просто не существует. Для решения не суть важно, какая задана прогрессия: конечная, или бесконечная. Не суть важно, как она задана: рядом чисел, или формулой n-го члена.

Самое главное - понимать, что формула работает с первого члена прогрессии до члена c номером n. Собственно, полное название формулы выглядит вот так: сумма n первых членов арифметической прогрессии. Количество этих самых первых членов, т.е. n , определяется исключительно заданием. В задании вся эта ценная информация частенько зашифровывается, да... Но ничего, в примерах ниже мы эти секреты пораскрываем.)

Примеры заданий на сумму арифметической прогрессии.

Прежде всего, полезная информация:

Основная сложность в заданиях на сумму арифметической прогрессии заключается в правильном определении элементов формулы.

Эти самые элементы составители заданий шифруют с безграничной фантазией.) Здесь главное - не бояться. Понимая суть элементов, достаточно просто их расшифровать. Разберём подробно несколько примеров. Начнём с задания на основе реального ГИА.

1. Арифметическая прогрессия задана условием: a n = 2n-3,5. Найдите сумму первых 10 её членов.

Хорошее задание. Лёгкое.) Нам для определения суммы по формуле чего надо знать? Первый член a 1 , последний член a n , да номер последнего члена n.

Где взять номер последнего члена n ? Да там же, в условии! Там сказано: найти сумму первых 10 членов. Ну и с каким номером будет последний, десятый член?) Вы не поверите, его номер - десятый!) Стало быть, вместо a n в формулу будем подставлять a 10 , а вместо n - десятку. Повторю, номер последнего члена совпадает с количеством членов.

Осталось определить a 1 и a 10 . Это легко считается по формуле n-го члена, которая дана в условии задачи. Не знаете, как это сделать? Посетите предыдущий урок, без этого - никак.

a 1 = 2·1 - 3,5 = -1,5

a 10 =2·10 - 3,5 =16,5

S n = S 10 .

Мы выяснили значение всех элементов формулы суммы арифметической прогрессии. Остаётся подставить их, да посчитать:

Вот и все дела. Ответ: 75.

Ещё задание на основе ГИА. Чуть посложнее:

2. Дана арифметическая прогрессия (a n), разность которой равна 3,7; a 1 =2,3. Найти сумму первых 15 её членов.

Сразу пишем формулу суммы:

Эта формулка позволяет нам найти значение любого члена по его номеру. Ищем простой подстановкой:

a 15 = 2,3 + (15-1)·3,7 = 54,1

Осталось подставить все элементы в формулу суммы арифметической прогрессии и посчитать ответ:

Ответ: 423.

Кстати, если в формулу суммы вместо a n просто подставим формулу n-го члена, получим:

Приведём подобные, получим новую формулу суммы членов арифметической прогрессии:

Как видим, тут не требуется n-й член a n . В некоторых задачах эта формула здорово выручает, да... Можно эту формулу запомнить. А можно в нужный момент её просто вывести, как здесь. Ведь формулу суммы и формулу n-го члена всяко надо помнить.)

Теперь задание в виде краткой шифровки):

3. Найти сумму всех положительных двузначных чисел, кратных трём.

Во как! Ни тебе первого члена, ни последнего, ни прогрессии вообще... Как жить!?

Придётся думать головой и вытаскивать из условия все элементы суммы арифметической прогрессии. Что такое двузначные числа - знаем. Из двух циферок состоят.) Какое двузначное число будет первым ? 10, надо полагать.) А последнее двузначное число? 99, разумеется! За ним уже трёхзначные пойдут...

Кратные трём... Гм... Это такие числа, которые делятся на три нацело, вот! Десятка не делится на три, 11 не делится... 12... делится! Так, кое-что вырисовывается. Уже можно записать ряд по условию задачи:

12, 15, 18, 21, ... 96, 99.

Будет ли этот ряд арифметической прогрессией? Конечно! Каждый член отличается от предыдущего строго на тройку. Если к члену прибавить 2, или 4, скажем, результат, т.е. новое число, уже не поделится нацело на 3. До кучи можно сразу и разность арифметической прогрессии определить: d = 3. Пригодится!)

Итак, можно смело записать кое-какие параметры прогрессии:

А какой будет номер n последнего члена? Тот, кто думает, что 99 - фатально заблуждается... Номера - они всегда подряд идут, а члены у нас - через тройку перескакивают. Не совпадают они.

Тут два пути решения. Один путь - для сверхтрудолюбивых. Можно расписать прогрессию, весь ряд чисел, и посчитать пальчиком количество членов.) Второй путь - для вдумчивых. Нужно вспомнить формулу n-го члена. Если формулу применить к нашей задаче, получим, что 99 - это тридцатый член прогрессии. Т.е. n = 30.

Смотрим на формулу суммы арифметической прогрессии:

Смотрим, и радуемся.) Мы вытащили из условия задачи всё необходимое для расчёта суммы:

a 1 = 12.

a 30 = 99.

S n = S 30 .

Остаётся элементарная арифметика. Подставляем числа в формулу и считаем:

Ответ: 1665

Ещё один тип популярных задачек:

4. Дана арифметическая прогрессия:

-21,5; -20; -18,5; -17; ...

Найти сумму членов с двадцатого по тридцать четвёртый.

Смотрим на формулу суммы и... огорчаемся.) Формула, напомню, считает сумму с первого члена. А в задаче нужно считать сумму с двадцатого... Не сработает формула.

Можно, конечно, расписать всю прогрессию в ряд, да поскладывать члены с 20 по 34. Но... как-то тупо и долго получается, правда?)

Есть более элегантное решение. Разобьём наш ряд на две части. Первая часть будет с первого члена по девятнадцатый. Вторая часть - с двадцатого по тридцать чётвёртый. Понятно, что если мы посчитаем сумму членов первый части S 1-19 , да сложим с суммой членов второй части S 20-34 , получим сумму прогрессии с первого члена по тридцать четвёртый S 1-34 . Вот так:

S 1-19 + S 20-34 = S 1-34

Отсюда видно, что найти сумму S 20-34 можно простым вычитанием

S 20-34 = S 1-34 - S 1-19

Обе суммы в правой части считаются с первого члена, т.е. к ним вполне применима стандартная формула суммы. Приступаем?

Вытаскиваем из условия задачи парметры прогрессии:

d = 1,5.

a 1 = -21,5.

Для расчёта сумм первых 19 и первых 34 членов нам нужны будут 19-й и 34-й члены. Считаем их по формуле n-го члена, как в задаче 2:

a 19 = -21,5 +(19-1)·1,5 = 5,5

a 34 = -21,5 +(34-1)·1,5 = 28

Остаётся всего ничего. От суммы 34 членов отнять сумму 19 членов:

S 20-34 = S 1-34 - S 1-19 = 110,5 - (-152) = 262,5

Ответ: 262,5

Одно важное замечание! В решении этой задачи имеется очень полезная фишка. Вместо прямого расчёта того, что нужно (S 20-34), мы посчитали то, что, казалось бы, не нужно - S 1-19 . А уж потом определили и S 20-34 , отбросив от полного результата ненужное. Такой "финт ушами" частенько спасает в злых задачках.)

В этом уроке мы рассмотрели задачи, для решения которых достаточно понимать смысл суммы арифметической прогрессии. Ну и пару формул знать надо.)

Практический совет:

При решении любой задачи на сумму арифметической прогрессии рекомендую сразу выписывать две главные формулы из этой темы.

Формулу n-го члена:

Эти формулы сразу подскажут, что нужно искать, в каком направлении думать, чтобы решить задачу. Помогает.

А теперь задачи для самостоятельного решения.

5. Найти сумму всех двузначных чисел, которые не делятся нацело на три.

Круто?) Подсказка скрыта в замечании к задаче 4. Ну и задачка 3 поможет.

6. Арифметическая прогрессия задана условием: a 1 =-5,5; a n+1 = a n +0,5. Найдите сумму первых 24 её членов.

Непривычно?) Это рекуррентная формула. Про неё можно прочитать в предыдущем уроке. Не игнорируйте ссылку, такие задачки в ГИА частенько встречаются.

7. Вася накопил к Празднику денег. Целых 4550 рублей! И решил подарить самому любимому человеку (себе) несколько дней счастья). Пожить красиво, ни в чём себе не отказывая. Потратить в первый день 500 рублей, а в каждый последующий день тратить на 50 рублей больше, чем в предыдущий! Пока не кончится запас денег. Сколько дней счастья получилось у Васи?

Сложно?) Поможет дополнительная формула из задачи 2.

Ответы (в беспорядке): 7, 3240, 6.

Если Вам нравится этот сайт...

Кстати, у меня есть ещё парочка интересных сайтов для Вас.)

Можно потренироваться в решении примеров и узнать свой уровень. Тестирование с мгновенной проверкой. Учимся - с интересом!)

можно познакомиться с функциями и производными.

Рассказать друзьям