Чему равна интенсивность. Интенсивность освещения и способы ее измерения

💖 Нравится? Поделись с друзьями ссылкой

Может очень сильно различаться, причем визуально мы не в состоянии определить степень освещенности, т. к. человеческий глаз наделен способностью приспосабливаться к разному освещению. Между тем, интенсивность освещения имеет чрезвычайно важное значение в самых разнообразных сферах деятельности. Для примера можно взять процесс кино- или видеосъемки, а также, допустим, выращивание комнатных растений.

Человеческий глаз воспринимает световые от 380 нм (фиолетового цвета) до 780 нм (красного). Лучше всего мы воспринимаем волны с длиной, как раз не самой пригодной для растений. Яркое и приятное нашему глазу освещение может быть неподходящим для растений в теплице, которые могут недополучать важных для фотосинтеза волн.

Интенсивность света измеряется в люксах. Ярким солнечным полднем в нашей средней полосе она достигает примерно 100 000 люкс, к вечеру снижается до 25 000 люкс. В густой тени ее значение составляет десятые доли этих величин. В помещениях интенсивность солнечного освещения значительно меньше, т. к. свет ослаблен деревьями и оконными стеклами. Самое яркое освещение (на южном окне летом сразу за стеклами) в лучшем случае 3-5 тысяч люкс, на середине комнаты (в 2-3 метрах от окна) - всего 500 люкс. Это минимально необходимое для выживания растений освещение. Для нормального роста даже неприхотливым требуется не менее 800 люкс.

Интенсивность света на глаз мы определить не можем. Для этого существует прибор, название которого - люксметр. При его покупке необходимо уточнить измеряемый им диапазон волн, т.к. возможности прибора хоть и шире возможностей человеческого глаза, но все же ограничены.

Интенсивность света также можно измерить с помощью фотоаппарата или фотоэкспонометра. Правда, придется сделать перерасчет полученных единиц в люксы. Для проведения измерения нужно в месте замера положить белый лист бумаги и навести на него фотоаппарат, светочувствительность которого установлена на 100, а диафрагма на 4. Определив выдержку, следует ее знаменатель умножить на 10, полученное значение будет приблизительно соответствовать освещению в люксах. Например, при полученной выдержке 1/60 сек. освещение около 600 люкс.

Если вы увлекаетесь разведением цветов и уходом за ними, то, конечно же, знаете, что энергия света жизненно необходима растениям для нормального фотосинтеза. Свет оказывает влияние на скорость роста, направление, развитие цветка, размер и форму его листьев. С уменьшением световой интенсивности пропорционально замедляются все процессы в растениях. Количество его зависит от того, насколько удален источник света, от стороны горизонта, на которую обращено окно, от степени затененности уличными деревьями, от наличия штор или жалюзи. Чем светлее помещение, тем активнее происходит рост растений и тем больше им требуется воды, тепла и удобрений. Если растения растут в тени, то и ухода они требуют в меньшем количестве.

При съемке фильма или телевизионной передачи освещенность имеет очень важное значение. Высококачественная съемка возможна при освещенности порядка 1000 люкс, достигаемой в телевизионной студии при помощи специальных ламп. Но приемлемое качество изображения можно получить и при меньшем освещении.

Интенсивность освещения в студии до начала и в процессе съемки измеряют с помощью экспонометров или высококачественных цветных мониторов, которые подключаются к видеокамере. До начала съемки лучше всего пройтись с экспонометром по всей съемочной площадке с целью определения затемненных или чрезмерно освещенных ее участков во избежание негативных явлений при просмотре отснятого материала. Кроме того, правильной регулировкой освещения можно добиться дополнительной выразительности снимаемой сцены и нужных режиссерских эффектов.

Таким образом, в геометрической оптике световую волну можно рассматривать как пучок лучей. Лучи, однако, сами по себе определяют лишь направление распространения света в каждой точке; остается вопрос о распределении интенсивности света в пространстве.

Выделим на какой-либо из волновых поверхностей рассматриваемого пучка бесконечно малый элемент. Из дифференциальной геометрии известно, что всякая поверхность имеет в каждой своей точке два, вообще говоря, различных главных радиуса кривизны.

Пусть (рис. 7) - элементы главных кругов кривизны, проведенные на данном элементе волновой поверхности. Тогда лучи, проходящие через точки а и с, пересекутся друг с другом в соответствующем центре кривизны а лучи, проходящие через b и d, пересекутся в другом центре кривизны .

При данных углах раствора лучей, исходящих из длины отрезков пропорциональны соответствующим радиусам кривизны (т. е. длинам и ); площадь элемента поверхности пропорциональна произведению длин , т. е. пропорциональна Другими словами, если рассматривать элемент волновой поверхности, ограниченный определенным рядом лучей, то при движении вдоль них площадь этого элемента будет меняться пропорционально .

С другой стороны, интенсивность, т. е. плотность потока энергии, обратно пропорциональна площади поверхности, через которую проходит данное количество световой энергии. Таким образом, мы приходим к выводу, что интенсивность

Эту формулу надо понимать следующим образом. На каждом данном луче (АВ на рис. 7) существуют определенные точки и , являющиеся центрами кривизны всех волновых поверхностей, пересекающих данный луч. Расстояния и от точки О пересечения волновой поверхности с лучом до точек являются радиусами кривизны волновой поверхности в точке О. Таким образом, формула (54,1) определяет интенсивность света в точке О на данном луче как функцию от расстояний до определенных точек на этом дуче. Подчеркнем, что эта формула непригодна для сравнения интенсивностей в разных точках одной и той же волновой поверхности.

Поскольку интенсивность определяется квадратом модуля поля, то для изменения самого поля вдоль луча мы можем написать:

где в фазовом множителе под R может поразумеваться как так и величины отличаются друг от друга только постоянным (для данного луча) множителем, поскольку разность , расстояние между обоими центрами кривизны, постоянна.

Если оба радиуса кривизны волновой поверхности совпадают, то (54,1) и (54,2) имеют вид

Это имеет место, в частности, всегда в тех случаях, когда свет испускается точечным источником (волновые поверхности являются тогда концентрическими сферами, a R - расстоянием до источника света).

Из (54,1) мы видим, что интенсивность обращается в бесконечность в точках т. е. в центрах кривизны волновых поверхностей. Применяя это ко всем лучам в пучке, находим, что интенсивность света в данном пучке обращается в бесконечность, вообще говоря, на двух поверхностях - геометрическом месте всех центров кривизны волновых поверхностей. Эти поверхности носят название каустик. В частном случае пучка лучей со сферическими волновыми поверхностями обе каустики сливаются в одну точку {фокус).

Отметим, что, согласно известным из дифференциальной геометрии свойствам геометрического места центров кривизны семейства поверхностей, лучи касаются каустик.

Надо иметь в виду, что (при выпуклых волновых поверхностях) центры кривизны волновых поверхностей могут оказаться лежащими не на самих лучах, а на их продолжениях за оптическую систему, от которой они исходят. В таких случаях говорят о мнимых каустиках (или мнимых фокусах). Интенсивность света при этом нигде не обращается в бесконечность.

Что касается обращения интенсивности в бесконечность, то в действительности, разумеется, интенсивность в точках каустики делается большой, но остается конечной (см. задачу к § 59). Формальное обращение в бесконечность означает, что приближение геометрической оптики становится во всяком случае неприменимым вблизи каустик. С этим же обстоятельством связано и то, что изменение фазы вдоль луча может определяться формулой (54,2) только на участках луча, не включающих в себя точек его касания с каустиками. Ниже (в § 59) будет показано, что в действительности при прохождении мимо каустики фаза поля уменьшается на . Это значит, что если на участке луча до его касания первой каустики поле пропорционально множителю - координата вдоль луча), то после прохождения мимо каустики поле будет пропорционально То же самое произойдет вблизи точки касания второй каустики, и за этой точкой поле будет пропорционально

Интенсивность света, связь интенсивности света с амплитудой светового вектора.

Интенсивностью света называют электромагнитную энергию , проходящую в единицу времени через единицу площади поверхности, перпендикулярной направлению распространения света. Частоты видимых световых волн лежат в пределах

= (,39 4-0,75)-10 15 Гц.

Ни глаз, ни какой-либо иной приемник световой энергии не может уследить за столь частыми изменениями потока энергии, вследствие чего они регистрируют усредненный по времени поток . Поэтому правильнее определить интенсивность как модуль среднего по времени значения плотности потока энергии, переносимой световой волной. Плотность потока электромагнитной энергии определяется выражением

Поскольку световая волна- это электромагнитная волна, то складывается из энергии магнитного и электрического полей

(4.5)

где V- объем, занимаемый волновым полем.

Из уравнений Максвелла следует, что векторы напряженности электрического и магнитного полей в электромагнитной волне связаны соотношением

(4.6)

Поэтому выражение (4.5) можно записать следующим образом

Из уравнений Максвелла скорость распространения электромагнитных волн

Выделим некоторый объем волнового поля в форме параллелепипеда (рис.4.5)

Рис.4.5

Тогда , по определению интенсивности

Используя выражение (4,6) и полагая, что в прозрачной среде m=1 получим

где n- показатель преломления среды, в которой распространяется волна. Таким образом, напряженность магнитного поля Н пропорционально напряженности электрического поля Е и n:

Тогда интенсивность волны будет определяться выражением

(4.7)

(коэффициент пропорциональности равен )- Следовательно, интенсивность света пропорциональна показателю преломления среды и квадрату амплитуды вектора напряженности электрического поля световой волны. Заметим, что при рассмотрении распространения света в однородной среде можно считать, что интенсивность пропорциональна квадрату амплитуды вектора напряженности электрического поля () световой волны:

Однако в случае прохождения света через границу раздела сред выражение для интенсивности, не учитывающее множитель n, приводит к не сохранению светового потока.

Рассмотрим сферическую световую волну. Площадь сферического фронта волны , где R- радиус фронта волны. Согласно уравнению (4,4) находим интенсивность

Эти выражения показывают, что амплитуда сферической волны уменьшается пропорционально расстоянию от источника световых волн. Если R достаточно велико, т.е. источник находится очень далеко от области наблюдения, то фронт волны представляется частью сферической поверхности очень большого радиуса. Ее можно считать плоскостью. Волна, фронт волны которой представляется плоскостью, называется плоской, так как энергия волны во всех плоскостях, представляющих фронты волны в различные моменты времени остается постоянной, то амплитуда у такой волны постоянна.

.Понятие интерференции, наложение гармонических волн, условия когерентности.

Свет является электромагнитной волной. Сложение волн, распространяющихся в среде, определяется сложением соответствующих колебаний. Рассмотрим наиболее простой случай сложения электромагнитных волн (колебаний):

1) частоты их одинаковы,

В этом случае для каждой точки среды, в которой происходит сложение волн, амплитуда результирующей волны для напряженности электрического поля определяется векторной диаграммой (рис.4.6)

Из диаграммы следует, что результирующая амплитуда определится следующим образом:

где d- разность фаз слагаемых волн (колебаний).

Результат сложения волн зависит от особенностей источников света и может быть различен.

Свет играет огромную роль не только в интерьере, но и в нашей жизни в целом. Ведь от правильной освещенности помещения зависит эффективность работы, а так же наше психологическое состояние. Свет дает человеку возможность не только видеть, но и оценивать цвета и формы окружающих предметов.

Конечно, для человеческих глаз наиболее комфортен естественный свет. При таком освещении все видно очень хорошо и без искажений цветов. Но не всегда естественное освещение присутствует, в темное время суток, например, приходиться обходиться искусственными источниками света.

Чтобы глаза не напрягались, и не портилось зрение, необходимо создать оптимальные условия света и тени, создавая максимально комфортное освещение.

Для глаз самое приятное освещение - естесcтвенное

Освещение, так же как и многие другие факторы, оценивается по количественным и качественным параметрам. Количественные характеристики определяются интенсивностью света, а качественные – его спектральным составом и распределением в пространстве.

Как и в чем измеряется интенсивность света?

У света есть множество характеристик и на каждую существует своя единица измерения:

  • Сила света характеризует величину световой энергии, которая переносится за определенное время в какое-либо направление. Она измеряется в канделах (кд), 1 кд приблизительно равна силе света, который излучает одна горящая свеча;
  • Яркость так же измеряется в канделах, помимо этого существуют такие единицы измерения, как стильб, апостильб и ламберт;
  • Освещенность – это отношение светового потока, который падает на определенный участок, к его поверхности. Измеряется она в люксах.

Именно освещенность является важным показателем для правильной работы зрения. Для того, чтобы определить эту величину используется специальный прибор для измерения. Называется он люксометр.

Люксометр – это прибор для измерения освещенности.

Состоит данный прибор из приемника света и измерительной части, она бывает стрелочного типа или электронного. Приемник света – это фотоэлемент, который преобразует световую волну в электрический сигнал и направляет в измерительную часть. Это устройство является фотометром и обладает заданной спектральной чувствительностью. С его помощью можно измерить не только видимый свет, но и инфракрасное излучение и т. д.

Данный прибор используется как в производственных помещениях, так и в учебных заведениях, а так же дома. Для каждого вида деятельности и занятий существуют свои нормы того, какой должна быть интенсивность света.

Комфортная интенсивность освещения

Зрительный комфорт зависит от многих факторов. Безусловно, самым приятным для человеческого глаза является солнечный свет. Но современный ритм жизни диктует свои правила, и очень часто приходится работать или просто находиться при искусственном освещении.

Производители осветительных приборов и ламп стараются создавать такие источники света, которые отвечали бы особенностям зрительного восприятия людей и создавали бы максимально комфортный по интенсивности свет.

Свет от лампы накаливания наиболее точно передает естественные оттенки

В обычных лампах накаливания в качестве источника освещения используется раскаленная пружина, а потому, этот свет наиболее похож на естественный.

Лампы разделяют на следующие категории по типу света, который они дают:

  • теплый свет, имеющий красноватые оттенки, он хорошо подходит для домашней обстановки;
  • нейтральный свет, белый, используется для освещения рабочих мест;
  • холодный свет, голубоватый, предназначен для мест, где выполняются работы высокой точности или для мест с жарким климатом.

Важно не только то, к какому типу относятся лампы, но и конструкция самого светильника или люстры: сколько лампочек вкручивается туда, куда направлен свет, закрыты или открыты плафоны – все эти особенности нужно учитывать при выборе осветительного прибора.

Нормы освещенности зафиксированы в нескольких документах, самые главные это: СНиП (строительные нормы и правила) и СанПиН (санитарные правила и нормы). Существуют также МГСН (Московские городские строительные нормы), а так же свой свод правил для каждого региона.

Именно на основе всех этих документов и принимается решение о том, какой должна быть интенсивность освещения.

Безусловно, задумываясь о том, какую люстру повесить в гостиную, спальню или кухню, никто не замеряет интенсивность освещения с помощью люксометра. Однако, знать в общих чертах какой свет будет комфортней для глаз, очень полезно.

В Таблице 1 приведены нормы освещенности для жилых помещений:

Таблица 1

В Таблице 2 привдены нормы освещенности для офисов

В домашних условиях, без специального оборудования трудно измерить освещение в помещениях, а потому для того чтобы понять, какую лампу выбрать, стоит обратить внимание на цвет (холодный, нейтральный или теплый) и количество Ватт. В помещениях для отдыха лучше использовать не слишком яркие, а в рабочих кабинетах – с более интенсивным светом.

Поскольку для глаз наиболее приятно естественное освещение, то предпочтение в домашней обстановке стоит отдавать лампам, дающим теплый свет. Когда мы приходим домой, глазам обязательно нужен отдых после напряженного рабочего дня. Правильно подобранные по яркости лампы для люстр и светильников помогут создать подходящее по интенсивности освещение.

Световые волны.

Законы геометрической (лучевой) оптики

Световые волны. Интенсивность света. Световой поток. Законы геометрической оптики. Полное внутреннее отражение

Оптика – это раздел физики, изучающий природу светового излучения, его распространение и взаимодействие с веществом. Раздел оптики, в котором изучается волновая природа света, называется волновой оптикой. Волновая природа света лежит в основе таких явлений, как интерференция, дифракция, поляризация. Раздел оптики, в котором не учитываются волновые свойства света и который основывается на понятии луча, называется геометрической оптикой.

§ 1. СВЕТОВЫЕ ВОЛНЫ

Согласно современным представлениям, свет представляет собой сложное явление: в одних случаях он ведет себя как электромагнитная волна, в других – как поток особых частиц (фотонов). Такое свойство называется корпускулярноволновым дуализмом (корпускула – частица, дуализм – двойственность). В этой части курса лекций будем рассматривать волновые явления света.

Световая волна – это электромагнитная волна с длиной волны в вакууме в диапазоне:

= (0,4¸ 0,76)× 10− 6 м= 0,4¸ 0,76 мкм= 400¸ 760 нм=

4 000¸

A –

ангстрем – единица измерения длины. 1A = 10−10 м.

Волны такого диапазона воспринимаются человеческим глазом.

Излучение с длиной волны меньше 400 нм называют ультрафиолетовым, а

с большей, чем 760 нм, –

инфракрасным.

Частота n световой волны для видимого света:

= (0,39¸ 0,75)× 1015 Гц,

с = 3× 108 м/с- скорость света в вакууме.

Скорость

совпадает

скоростью

распространения

электромагнитной волны.

Показатель преломления

Скорость распространения света в среде, как и любой электромагнитной волны, равна (см. (7.3)):

Для характеристики оптических свойств среды вводится показатель преломления. Отношение скорости света в вакууме к скорости света в данной среде называется абсолютным показателем преломления:

С учетом (7.3)

так как для большинства прозрачных веществ μ=1.

Формула (8.2) связывает оптические свойства вещества с его электрическими свойствами. Для любой среды, кроме вакуума, n> 1. Для вакуума n = 1, для газов при нормальных условиях n≈ 1.

Показатель преломления характеризует оптическую плотность среды . Среда с большим показателем преломления называется оптически более плотной. Обозначим абсолютные показатели преломления для двух сред:

n 2 =

Тогда относительный показатель преломления равен:

n 21=

где v 1 и v 2 –

скорости света в первой и второй среде, соответственно.

диэлектрическая

проницаемость среды ε зависит от частоты

электромагнитной волны, то n = n(ν) илиn = n(λ) – показатель преломления будет зависеть от длины волны света (см. лекции № 16, 17).

Зависимость показателя преломления от длины волны (или частоты) называется дисперсией .

В световой волне, как и в любой электромагнитной волне, колеблются векторы E и H. Эти векторы перпендикулярны друг другу и направлению

вектора v . Как показывает опыт, физиологическое, фотохимическое, фотоэлектрическое и другие виды воздействий вызываются колебаниями электрического вектора. Поэтому световой вектор – это вектор напряженности электрического поля световой (электромагнитной) волны.

Для монохроматической световой волны изменение во времени и пространстве проекции светового вектора на направление, вдоль которого он

Здесь k – волновое число; r – расстояние, отсчитываемое вдоль направления распространения волны; E m – амплитуда световой волны. Для плоской волныE m = const , для сферической убывает как 1/r.

§ 2. ИНТЕНСИВНОСТЬ СВЕТА. СВЕТОВОЙ ПОТОК

Частота световых волн очень велика, поэтому приемник света или глаз фиксирует усредненный по времени поток. Интенсивностью света называется модуль среднего по времени значения плотности энергии в данной точке пространства. Для световой волны, как и для любой электромагнитной волны, интенсивность (см (7.8)) равна:

Для световой волны μ≈ 1, поэтому из (7.5) следует:

μ0 H =ε0 ε E,

откуда с учетом (8.2):

E ~ nE .

Подставим в (7.8) формулы (8.4) и (8.5). После усреднения получим:

Следовательно, интенсивность света пропорциональна квадрату амплитуды световой волны и показателю преломления. Заметим, что для

вакуума и воздуха n = 1, поэтому I ~ E 2 m (сравните с (7.9)).

Для характеристики интенсивности света с учетом его способности вызывать зрительное ощущение вводится величина Ф, называемая световым потоком. Действие света на глаз сильно зависит от длины волны. Наиболее

чувствителен глаз к излучению с длиной волны λ з = 555 нм (зеленый цвет).

Для других волн чувствительность глаза ниже, а вне интервала (400– 760 нм) чувствительность глаза равна нулю.

Световым потоком называется поток световой энергии, оцениваемый по зрительному ощущению. Единицей светового потока является люмен (лм). Соответственно, интенсивность измеряется либо в энергетических единицах (Вт/м2 ), либо в световых единицах (лм/м2 ).

Интенсивность света характеризует численное значение средней энергии, переносимой световой волной в единицу времени через единицу площади площадки, поставленной перпендикулярно направлению распространения волны. Линии, вдоль которых распространяется световая энергия, называют лучами. Раздел оптики, в котором изучаются законы распространения светового

излучения на основе представлений о световых лучах, называется геометрической, или лучевой оптикой.

§ 3. ОСНОВНЫЕ ЗАКОНЫ ГЕОМЕТРИЧЕСКОЙ ОПТИКИ

Геометрическая оптика – это приближенное рассмотрение распространения света в предположении, что свет распространяется вдоль некоторых линий – лучей (лучевая оптика). В этом приближении пренебрегают конечностью длин волн света, полагая, что λ→ 0.

Геометрическая оптика позволяет во многих случаях достаточно хорошо рассчитать оптическую систему. Но в ряде случаев реальный расчет оптических систем требует учета волновой природы света.

Первые три закона геометрической оптики известны с древних времен. 1. Закон прямолинейного распространения света.

Закон прямолинейного распространения света утверждает, что в

однороднойсреде свет распространяется прямолинейно.

Если среда неоднородна, т. е. ее показатель преломления изменяется от точки к точке, или n = n(r) , то свет не будет распространяться по прямой. При

наличии резких неоднородностей, таких, как отверстия в непрозрачных экранах, границы этих экранов, наблюдается отклонение света от прямолинейного распространения.

2. Закон независимости световых лучей утверждает, что лучи при пересечениине возмущают друг друга . При больших интенсивностях этот закон не соблюдается, происходит рассеяние света на свете.

3 и 4. Законы отражения и преломления утверждают, что на границе раздела двух сред происходит отражение и преломление светового луча. Отраженный и преломленный лучи лежат в одной плоскости с падающим

лучом и перпендикуляром, восстановленным к границе раздела в точке падения

Угол падения равен углу отражения:

для которых показатель

Рассказать друзьям