Градиент функции в рассматриваемой точке указывает. Градиент функции

💖 Нравится? Поделись с друзьями ссылкой

Из школьного курса математики известно, что вектор на плоскости представляет собой направленный отрезок. Его начало и конец имеют по две координаты. Координаты вектора рассчитываются путем вычитания из координат конца координат начала.

Понятие вектора может быть распространено и на n-мерное пространство (вместо двух координат будетnкоординат).

Градиентом gradzфункцииz=f(х 1 , х 2 , …х n) называется вектор частных производных функции в точке, т.е. вектор с координатами.

Можно доказать, что градиент функции характеризует направление наискорейшего роста уровня функции в точке.

Например, для функции z= 2х 1 + х 2 (см. рисунок 5.8) градиент в любой точке будет иметь координаты (2; 1). Построить его на плоскости можно различными способами, взяв в качестве начала вектора любую точку. Например, можно соединить точку (0; 0) с точкой (2; 1), или точку (1; 0) с точкой (3; 1), или точку (0; 3) с точкой (2; 4), или т.п. (см. рисунок 5.8). Все построенные таким образом вектора будут иметь координаты (2 – 0; 1 – 0) = = (3 – 1; 1 – 0) = (2 – 0; 4 – 3) = (2; 1).

Из рисунка 5.8 хорошо видно, что уровень функции растет в направлении градиента, поскольку построенные линии уровня соответствуют значениям уровня 4 > 3 > 2.

Рисунок 5.8 - Градиент функции z= 2х 1 + х 2

Рассмотрим другой пример – функцию z= 1/(х 1 х 2). Градиент этой функции уже не будет всегда одинаковым в разных точках, поскольку его координаты определяются формулами (-1/(х 1 2 х 2); -1/(х 1 х 2 2)).

На рисунке 5.9 представлены линии уровня функцииz= 1/(х 1 х 2) для уровней 2 и 10 (прямая 1/(х 1 х 2) = 2 обозначена пунктиром, а прямая 1/(х 1 х 2) = 10 – сплошной линией).

Рисунок 5.9 - Градиенты функции z= 1/(х 1 х 2) в различных точках

Возьмем, например, точку (0,5; 1) и вычислим градиент в этой точке: (-1/(0,5 2 *1); -1/(0,5*1 2)) = (-4; -2). Заметим, что точка (0,5; 1) лежит на линии уровня 1/(х 1 х 2) = 2, ибоz=f(0,5; 1) = 1/(0,5*1) = 2. Чтобы изобразить вектор (-4; -2) на рисунке 5.9, соединим точку (0,5; 1) с точкой (-3,5; -1), ибо (-3,5 – 0,5; -1 - 1) = (-4; -2).

Возьмем другую точку на той же самой линии уровня, например, точку (1; 0,5) (z=f(1; 0,5) = 1/(0,5*1) = 2). Вычислим градиент в этой точке (-1/(1 2 *0,5); -1/(1*0,5 2)) = (-2; -4). Чтобы изобразить его на рисунке 5.9, соединим точку (1; 0,5) с точкой (-1; -3,5), ибо (-1 - 1; -3,5 - 0,5) = (-2; -4).

Возьмем еще одну точку на той же самой линии уровня, но только теперь в неположительной координатной четверти. Например, точку (-0,5; -1) (z=f(-0,5; -1) = 1/((-1)*(-0,5)) = 2). Градиент в этой точке будет равен (-1/((-0,5) 2 *(-1)); -1/((-0,5)*(-1) 2)) = (4; 2). Изобразим его на рисунке 5.9, соединив точку (-0,5; -1) с точкой (3,5; 1), ибо (3,5 – (-0,5); 1 – (-1)) = (4; 2).

Следует обратить внимание, что во всех трех рассмотренных случаях градиент показывает направление роста уровня функции (в сторону линии уровня 1/(х 1 х 2) = 10 > 2).

Можно доказать, что градиент всегда перпендикулярен линии уровня (поверхности уровня), проходящей через данную точку.

Экстремумы функции многих переменных

Определим понятие экстремума для функции многих переменных.

Функция многих переменных f(X) имеет в точке Х (0) максимум (минимум), если найдется такая окрестность этой точки, что для всех точек Х из этой окрестности выполняются неравенстваf(X)f(X (0)) ().

Если эти неравенства выполняются, как строгие, то экстремум называется сильным , а если нет, тослабым .

Заметим, что определенный таким образом экстремум носит локальный характер, так как эти неравенства выполняются лишь для некоторой окрестности точки экстремума.

Необходимым условием локального экстремума дифференцируемой функции z=f(х 1 , . . ., х n) в точке является равенство нулю всех частных производных первого порядка в этой точке:
.

Точки, в которых выполняются эти равенства, называются стационарными .

По-другому необходимое условие экстремума можно сформулировать так: в точке экстремума градиент равен нулю. Можно доказать и более общее утверждение - в точке экстремума обращаются в ноль производные функции по всем направлениям.

Стационарные точки должны быть подвергнуты дополнительным исследованиям - выполняются ли достаточные условия существования локального экстремума. Для этого определяют знак дифференциала второго порядка. Если при любых , не равных одновременно нулю, он всегда отрицателен (положителен), то функция имеет максимум (минимум). Если может обращаться в ноль не только при нулевых приращениях, то вопрос об экстремуме остается открытым. Если может принимать как положительные, так и отрицательные значения, то экстремума в стационарной точке нет.

В общем случае определение знака дифференциала представляет собой достаточно сложную проблему, которую здесь рассматривать не будем. Для функции двух переменных можно доказать, что если в стационарной точке
, то экстремум присутствует. При этом знак второго дифференциала совпадает со знаком
, т.е. если
, то это максимум, а если
, то это минимум. Если
, то экстремума в этой точке нет, а если
, то вопрос об экстремуме остается открытым.

Пример 1 . Найти экстремумы функции
.

Найдем частные производные методом логарифмического дифференцирования.

ln z = ln 2 + ln (x + y) + ln (1 + xy) – ln (1 + x 2) – ln (1 + y 2)

Аналогично
.

Найдем стационарные точки из системы уравнений:

Таким образом, найдены четыре стационарные точки (1; 1), (1; -1), (-1; 1) и (-1; -1).

Найдем частные производные второго порядка:

ln (z x `) = ln 2 + ln (1 - x 2) -2ln (1 + x 2)

Аналогично
;
.

Так как
, знак выражения
зависит только от
. Отметим, что в обеих этих производных знаменатель всегда положителен, поэтому можно рассматривать только знак числителя,или даже знак выражений х(х 2 – 3)иy(y 2 – 3). Определим его в каждой критической точке и проверим выполнение достаточного условия экстремума.

Для точки (1; 1) получим 1*(1 2 – 3) = -2 < 0. Т.к. произведение двух отрицательных чисел
> 0, а
< 0, в точке (1; 1) можно найти максимум. Он равен
= 2*(1 + 1)*(1 +1*1)/((1 +1 2)*(1 +1 2)) = = 8/4 = 2.

Для точки (1; -1) получим 1*(1 2 – 3) = -2 < 0 и (-1)*((-1) 2 – 3) = 2 > 0. Т.к. произведение этих чисел
< 0, в этой точке экстремума нет. Аналогично можно показать, что нет экстремума в точке (-1; 1).

Для точки (-1; -1) получим (-1)*((-1) 2 – 3) = 2 > 0. Т.к. произведение двух положительных чисел
> 0, а
> 0, в точке (-1; -1) можно найти минимум. Он равен 2*((-1) + (-1))*(1 +(-1)*(-1))/((1 +(-1) 2)*(1 +(-1) 2)) = -8/4 = = -2.

Найти глобальный максимум или минимум (наибольшее или наименьшее значение функции) несколько сложнее, чем локальный экстремум, так как эти значения могут достигаться не только в стационарных точках, но и на границе области определения. Исследовать поведение функции на границе этой области не всегда легко.

Некоторые понятия и термины используются сугубо в узких рамках Другие же определения встречаются в областях, резко противоположных. Так, например, понятием "градиент" пользуется и физик, и математик, и специалист по маникюру или "Фотошопу". Что же такое градиент как понятие? Давайте разбираться.

Что говорят словари?

Что такое "градиент" специальные тематические словари трактуют в соотношении со своей спецификой. В переводе с латинского языка это слово обозначает - "тот, который идет, растет". А "Википедия" определяет это понятие как "вектор, указывающий направление возрастания величины". В толковых словарях мы видим значение этого слова как "изменение любой величины на одно значение". Понятие может нести как количественное, так и качественное значение.

Если коротко, то это плавный постепенный переход любой величины на одно значение, прогрессивное и непрерывное изменение в количестве или направлении. Вектор вычисляют математики, метеорологи. Это понятие применяют в астрономии, медицине, искусстве, компьютерной графике. Под схожим термином определяются совершенно не схожие виды деятельности.

Математические функции

Что такое градиент функции в математике? Это которого указывает направление роста функции в скалярном поле от одного значения к другому. Величина градиента рассчитывается с помощью определения частных производных. Для выяснения максимально быстрого направления роста функции на графике выбираются две точки. Они определяют начало и конец вектора. Скорость роста значения от одной точки к другой - это величина градиента. Математические функции, основанные на расчетах этого показателя, используются в векторной компьютерной графике, объектами которой являются графические изображения математических объектов.

Что такое градиент в физике?

Понятие градиента распространено во многих отраслях физики: градиент оптики, температуры, скорости, давления и т. д. В этой отрасли понятие обозначает меру возрастания или убывание величины на единицу. Вычисляется расчетами как разница между двумя показателями. Рассмотрим некоторые из величин подробнее.

Что такое градиент потенциала? В работе с электростатическим полем определяются две характеристики: напряженность (силовая) и потенциал (энергетическая). Эти разные величины связаны со средой. И хотя они и определяют разные характеристики, все же имеют связь между собой.

Для определения напряженности силового поля используется градиент потенциала - величина, которая определяет быстроту изменения потенциала по направлению силовой линии. Как рассчитать? Разность потенциалов двух точек электрического поля вычисляется по известному напряжению с помощью вектора напряженности, который равен градиенту потенциала.

Термины метеорологов и географов

Впервые понятие градиента было применено именно метеорологами для определения изменения величины и направления различных метеорологических показателей: температуры, давления, скорости и силы ветра. Он является мерой количественного изменения различных величин. В математику термин ввел Максвелл уже значительно позднее. В определении погодных условий существуют понятия вертикального и горизонтального градиентов. Рассмотрим их подробнее.

Что такое градиент температуры вертикальный? Это величина, которая показывает изменение показателей, вычисленное на высот в 100 м. Может быть как положительного направления, так и отрицательного, в отличие от горизонтального, который всегда положителен.

Градиент показывает на местности величину или угол уклона. Вычисляется как отношение высоты к длине проекции пути на определенном участке. Выражается в процентах.

Медицинские показатели

Определение "градиент температурный" можно встретить также среди медицинских терминов. Он показывает разницу в соответствующих показателях внутренних органов и поверхности тела. В биологии градиент физиологический фиксирует изменение в физиологии любого органа или организма в целом на любой стадии его развития. В медицине показатель метаболический - интенсивность обмена веществ.

Не только физики, но и медики используют этот термин в работе. Что такое градиент давления в кардиологии? Такое понятие определяет разность кровяного давления в любых связанных между собой отделах сердечно-сосудистой системы.

Убывающий градиент автоматии - это показатель уменьшения частоты возбуждений сердца в направлении от его основания к верху, возникающие автоматически. Кроме того, кардиологи место поражения артерии и его степень выявляют благодаря контролю над разностью амплитуд систолических волн. Иными словами, с помощью амплитудного градиента пульса.

Что такое градиент скорости?

Когда говорят о скорости изменения некой величины, то подразумевают под этим быстроту изменения по времени и в пространстве. Другими словами градиент скорости определяет изменение пространственных координат в соотношении с временными показателями. Этот показатель вычисляют метеорологи, астрономы, химики. Градиент скорости сдвига слоев жидкости определяют в нефтегазовой промышленности, для вычисления скорости подъема жидкости по трубе. Такой показатель тектонических движений - это область расчетов сейсмологов.

Экономические функции

Для обоснования важных теоретических выводов понятием градиента широко пользуются экономисты. При решении задач потребителя используется функция полезности, которая помогает представить предпочтения из множества альтернатив. "Функция бюджетных ограничений" - термин, используемый для обозначения множества потребительских наборов. Градиенты в этой области используют для вычисления оптимальных потреблений.

Градиент цвета

Термин "градиент" знаком творческим личностям. Хоть они и далеки от точных наук. Что такое градиент для дизайнера? Так как в точных науках - это постепенное увеличение величины на единицу, так и в цвете этот показатель обозначает плавный, растянутый переход оттенков одного цвета от более светлого к темному, или же наоборот. Художники так и называют этот процесс - "растяжка». Возможен переход и к разным сопутствующим цветам в одной гамме.

Градиентные растяжки оттенков в окраске помещений заняли прочную позицию среди методик дизайна. Новомодный стиль омбре - плавное перетекание оттенка от светлого к темному, от яркого к бледному - эффектно преобразует любое помещения в доме и в офисе.

Оптики используют специальные линзы в солнцезащитных очках. Что такое градиент в очках? Это изготовление линзы особым способом, когда сверху вниз цвет переходит от более темного к более светлому оттенку. Изделия, изготовленные по такой технологии, защищают глаза от солнечного излучения и позволяют рассматривать предметы даже при очень ярком свете.

Цвет в веб-дизайне

Тем, кто занимается веб-дизайном и компьютерной графикой, хорошо знаком универсальный инструмент "градиент", с помощью которого создается масса самых разнообразных эффектов. Переходы цвета преображаются в блики, причудливый фон, трехмерность. Манипуляции с оттенками, создание света и тени придает объем векторным объектам. В этих целях используются несколько видов градиентов:

  • Линейный.
  • Радиальный.
  • Конусовидный.
  • Зеркальный.
  • Ромбовидный.
  • Градиент шума.

Градиентная красота

Для посетительниц салонов красоты вопрос о том, что такое градиент, не станет неожиданным. Правда, и в этом случае знание математических законов и основ физики не обязательно. Речь идет все так же о цветовых переходах. Объектом градиента становятся волосы и ногти. Техника омбрэ, что в переводе с французского обозначает "тон" пришла в моду от спортивных любительниц серфинга и других пляжных развлечений. Естественным образом выгоревшие и вновь отросшие волосы стали хитом. Модницы стали специально окрашивать волосы с еле заметным переходом оттенков.

Техника омбре не прошла мимо маникюрных салонов. Градиент на ногтях создает окраску с постепенным осветлением пластины от корня к краю. Мастера предлагают горизонтальный, вертикальный, с переходом и другие разновидности.

Рукоделие

Рукодельницам понятие "градиент" знакомо еще с одной стороны. Техника подобного плана используется в создании вещей ручной работы в стиле декупаж. Таким способом создают новые вещи под старину, или реставрируют старые: комоды, стулья, сундуки и прочее. Декупаж подразумевает нанесение узора с помощью трафарета, основой для которого служит градиент цвета, как фон.

Художники по тканям взяли на вооружение окраску таким способом для новых моделей. Платья с расцветкой градиент покорили подиумы. Моду подхватили рукодельницы - вязальщицы. Трикотажные вещи с плавным переходом цвета пользуются успехом.

Подводя итог определению "градиент", можно сказать об очень обширной области человеческой деятельности, в которой находится место этому термину. Не всегда замена синонимом "вектор" оказывается подходящей, так как вектор - это все-таки понятие функциональное, пространственное. В чем определяется общность понятия - это постепенное изменение определенной величины, субстанции, физического параметра на единицу за определенный период. В цвете - это плавный переход тона.

ГРАДИЕНТ ФУНКЦИИ и = f(x, у, z), заданной в некоторой обл. пространства (X Y Z), есть вектор с проекциями обозначаемый символами: grad где i, j, k - координатные орты. Г. ф. - есть функция точки (х, у, z), т. е. он образует векторное поле. Производная в направлении Г. ф. в данной точке достигает наибольшего значения и равна: Направление градиента есть направление наибыстрейшего возрастания функции. Г. ф. в данной точке перпендикулярен поверхности уровня, проходящей через эту точку. Эффективность использования Г. ф. при литологических исследованиях была показана при изучении эоловых отл. Центральных Каракумов.

Геологический словарь: в 2-х томах. - М.: Недра . Под редакцией К. Н. Паффенгольца и др. . 1978 .

Смотреть что такое "ГРАДИЕНТ ФУНКЦИИ" в других словарях:

    Эта статья о математической характеристике; о способе заливки см.: Градиент (компьютерная графика) … Википедия

    - (лат.). Разность в барометрических и термометрических показаниях в разных местностях. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910. ГРАДИЕНТ разность в показаниях барометра и термометра в один и тот же момент… … Словарь иностранных слов русского языка

    градиент - Изменение значения некоторой величины на единицу расстояния в заданном направлении. Топографический градиент — это изменение высоты местности на измеренном по горизонтали расстоянии. Тематики релейная защита EN gradient of the differential protection tripping characteristic … Справочник технического переводчика

    Градиент - вектор, направленный в сторону наискорейшего возрастания функции и равный по величине ее производной в этом направлении: где символами ei обозначены единичные векторы осей координат (орты) … Экономико-математический словарь

    Одно из основных понятий векторного анализа и теории нелинейных отображений. Градиентом скалярной функции векторного аргумента из евклидова пространства Е n наз. производная функции f(t).по векторному аргументу t, то есть n мерный вектор с… … Математическая энциклопедия

    Градиент физиологический - – величина, отражающая изменение к либо показателя функции в зависимости от другой величины; напр., градиент парциального давления разность парциальных дав лений, определяющая диффузию газов из альвеол (акцинусов) в кровь и из крови в… … Словарь терминов по физиологии сельскохозяйственных животных

    I Градиент (от лат. gradiens, род. падеж gradientis шагающий) Вектор, показывающий направление наискорейшего изменения некоторой величины, значение которой меняется от одной точки пространства к другой (см. Поля теория). Если величина… … Большая советская энциклопедия

    Градиент - (от лат. gradiens шагающий, идущий) (в математике) вектор, показывающий направление наискорейшего возрастания некоторой функции; (в физике) мера возрастания или убывания в пространстве или на плоскости какой либо физической величины на единицу… … Начала современного естествознания

Книги

  • Методы решения некоторых задач избранных разделов высшей математики. Практикум , Клименко Константин Григорьевич, Левицкая Галина Васильевна, Козловский Евгений Александрович. В данном практикуме рассматриваются методы решения некоторых типов задач из таких разделов общепринятого курса математического анализа, как предел и экстремум функции, градиент и производная…
Рассказать друзьям