Момент количества движения точки относительно центра. Что значит "момент количества движения"

💖 Нравится? Поделись с друзьями ссылкой

МОМЕНТ КОЛИЧЕСТВА ДВИЖЕНИЯ (кинетический момент, момент импульса, орбитальный момент, угловой момент) - одна из динамич. характеристик движения или механич. системы; играет особенно важную роль при изучении вращат. движения. Как и для , различают M. к. д. относительно центра (точки) и относительно оси.

M. к. д. материальной точки относительно центра О равен векторному произведению радиуса-вектора r точки, проведённого из центра О , на её кол-во движения mv , т. е. k 0 = [r m u ] или в др. обозначениях k 0 = r m u . M. к. д. k z материальной точки относительно оси z, проходящей через центр О , равен проекции вектора k 0 на эту ось. Для вычисления M. к. д. точки справедливы все ф-лы, приведённые для вычисления момента силы , если в них заменить вектор F (или его проекции) вектором m u (или его проекциями). Изменение M. к. д. точки происходит под действием момента m 0 (F ) приложенной силы. Характер этого изменения определяется ур-нием d k /dt = m 0 (F ), являющимся следствием осн. закона . Когда m 0 (F ) = 0, что, напр., имеет место для центр. сил, M. к. д. точки относительно центра О остаётся величиной постоянной; точка движется при этом по плоской кривой и её радиус-вектор в любые равные промежутки времени описывает равные площади. Этот результат важен для небесной механики (см. Кеплера законы ),а также для теории движения космич. летат. аппаратов, ИСЗ и др.

Для механич. системы вводится понятие о главном M. к. д. (или кинетич. моменте) системы относительно центра О , равном геом. сумме M. к. д. всех точек сис-темы относительно того же центра:

Вектор K 0 может быть определён его проекциями на взаимно перпендикулярные оси Oxyz . Величины K x , K y , К z , являются одновременно главным M. к. д. системы относительно соответствующих осей. Для тела, вращающегося вокруг неподвижной оси z с угл. скоростью w, эти величины равны: K x = -I xz w, К у = = -I yz w, K z = I z w, где I z - осевой, a I xz и I yz - центробежные . Если же тело движется около неподвижной точки О , то для него в проекциях на главные оси инерции, проведённые в точке О , будет K x =- I x w x , К у = 1 у w у, K z = I z w z , где I x , 1 у, I z - моменты инерции относительно гл. осей; w x , w y , w z - проекция мгновенной угл. скорости w на эти оси. Из ф-л видно, что направление вектора K 0 совпадает с направлением w лишь тогда, когда тело вращается вокруг одной из своих гл. (для точки О )осей инерции. В этом случае K 0 = I w , где I - момент инерции тела относительно этой гл. оси.

Изменение главного M. к. д. системы происходит только в результате внеш. воздействий и зависит от гл. момента M e 0 внеш. сил; эта зависимость определяется ур-нием dK 0 /dt = M e 0 (ур-ние моментов). В отличие от случая движения одной точки, ур-ние моментов для системы не является следствием ур-ния кол-в движения, и оба эти ур-ния могут применяться для изучения движения системы одновременно. С помощью одного только ур-ния моментов движение системы (тела) может быть полностью определено лишь в случае чисто вращат. движения (вокруг неподвижной оси или точки). Если гл. момент внеш. сил относительно к--н. центра или оси равен нулю, то главный M. к. д. системы относительно этого центра или оси остаётся величиной постоянной, т. е. имеет место закон сохранения M. к. д. (см.


Динамика:
Динамика материальной точки
§ 28. Теорема об изменении количества движения материальной точки. Теорема об изменении момента количества движения материальной точки

Задачи с решениями

28.1 Железнодорожный поезд движется по горизонтальному и прямолинейному участку пути. При торможении развивается сила сопротивления, равная 0,1 веса поезда. В момент начала торможения скорость поезда равняется 20 м/с. Найти время торможения и тормозной путь.
РЕШЕНИЕ

28.2 По шероховатой наклонной плоскости, составляющей с горизонтом угол α=30°, спускается тяжелое тело без начальной скорости. Определить, в течение какого времени T тело пройдет путь длины l=39,2 м, если коэффициент трения f=0,2.
РЕШЕНИЕ

28.3 Поезд массы 4*10^5 кг входит на подъем i=tg α=0,006 (где α угол подъема) со скоростью 15 м/с. Коэффициент трения (коэффициент суммарного сопротивления) при движении поезда равен 0,005. Через 50 с после входа поезда на подъем его скорость падает до 12,5 м/с. Найти силу тяги тепловоза.
РЕШЕНИЕ

28.4 Гирька М привязана к концу нерастяжимой нити MOA, часть которой OA пропущена через вертикальную трубку; гирька движется вокруг оси трубки по окружности радиуса MC=R, делая 120 об/мин. Медленно втягивая нить OA в трубку, укорачивают наружную часть нити до длины OM1, при которой гирька описывает окружность радиусом R/2. Сколько оборотов в минуту делает гирька по этой окружности?
РЕШЕНИЕ

28.5 Для определения массы груженого железнодорожного состава между тепловозами и вагонами установили динамометр. Среднее показание динамометра за 2 мин оказалось 10^6 Н. За то же время состав набрал скорость 16 м/с (вначале состав стоял на месте). Найти массу состава, если коэффициент трения f=0,02.
РЕШЕНИЕ

28.6 Каков должен быть коэффициент трения f колес заторможенного автомобиля о дорогу, если при скорости езды v=20 м/с он останавливается через 6 с после начала торможения.
РЕШЕНИЕ

28.7 Пуля массы 20 г вылетает из ствола винтовки со скоростью v=650 м/с, пробегая канал ствола за время t=0,00095 c. Определить среднюю величину давления газов, выбрасывающих пулю, если площадь сечения канала σ=150 мм^2.
РЕШЕНИЕ

28.8 Точка M движется вокруг неподвижного центра под действием силы притяжения к этому центру. Найти скорость v2 в наиболее удаленной от центра точке траектории, если скорость точки в наиболее близком к нему положении v1=30 см/с, а r2 в пять раз больше r1.
РЕШЕНИЕ

28.9 Найти импульс равнодействующей всех сил, действующих на снаряд за время, когда снаряд из начального положения O переходит в наивысшее положение М. Дано: v0=500 м/с; α0=60°; v1=200 м/с; масса снаряда 100 кг.
РЕШЕНИЕ

28.10 Два астероида М1 и М2 описывают один и тот же эллипс, в фокусе которого S находится Солнце. Расстояние между ними настолько мало, что дугу М1М2 эллипса можно считать отрезком прямой. Известно, что длина дуги М1М2 равнялась a, когда середина ее находилась в перигелии P. Предполагая, что астероиды движутся с равными секториальными скоростями, определить длину дуги М1М2, когда середина ее будет проходить через афелий A, если известно, что SP=R1 и SA=R2.
РЕШЕНИЕ

28.11 Мальчик массы 40 кг стоит на полозьях спортивных саней, масса которых равна 20 кг, и делает каждую секунду толчок с импульсом 20 Н*с. Найти скорость, приобретаемую санями за 15 c, если коэффициент трения f=0,01.
РЕШЕНИЕ

28.12 Точка совершает равномерное движение по окружности со скоростью v=0,2 м/с, делая полный оборот за время T=4 c. Найти импульс S сил, действующих на точку, за время одного полупериода, если масса точки m=5 кг. Определить среднее значение силы F.
РЕШЕНИЕ

28.13 Два математических маятника, подвешенных на нитях длин l1 и l2 (l1>l2), совершают колебания одинаковой амплитуды. Оба маятника одновременно начали двигаться в одном направлении из своих крайних отклоненных положений. Найти условие, которому должны удовлетворять длины l1 и l2 для того, чтобы маятники по истечении некоторого промежутка времени одновременно вернулись в положение равновесия. Определить наименьший промежуток времени T.
РЕШЕНИЕ

28.14 Шарик массы m, привязанный к нерастяжимой нити, скользит по гладкой горизонтальной плоскости; другой конец нити втягивают с постоянной скоростью a в отверстие, сделанное на плоскости. Определить движение шарика и натяжение нити T, если известно, что в начальный момент нить расположена по прямой, расстояние между шариком и отверстием равно R, а проекция начальной скорости шарика на перпендикуляр к направлению нити равна v0.
РЕШЕНИЕ

28.15 Определить массу M Солнца, имея следующие данные: радиус Земли R=6,37*106 м, средняя плотность 5,5 т/м3, большая полуось земной орбиты a=1,49*10^11 м, время обращения Земли вокруг Солнца T=365,25 сут. Силу всемирного тяготения между двумя массами, равными 1 кг, на расстоянии 1 м считаем равной gR2/m Н, где m масса Земли; из законов Кеплера следует, что сила притяжения Земли Солнцем равна 4π2a3m/(T2r2), где r расстояние Земли от Солнца.
РЕШЕНИЕ

28.16 Точка массы m, подверженная действию центральной силы F, описывает лемнискату r2=a cos 2φ, где a величина постоянная, r расстояние точки от силового центра; в начальный момент r=r0, скорость точки равна v0 и составляет угол α с прямой, соединяющей точку с силовым центром. Определить величину силы F, зная, что она зависит только от расстояния r. По формуле Бине F =-(mc2/r2)(d2(1/r)/dφ2+1/r), где c удвоенная секторная скорость точки.
РЕШЕНИЕ

28.17 Точка M, масса которой m, движется около неподвижного центра O под влиянием силы F, исходящей из этого центра и зависящей только от расстояния MO=r. Зная, что скорость точки v=a/r, где a величина постоянная, найти величину силы F и траекторию точки.
РЕШЕНИЕ

28.18 Определить движение точки, масса которой 1 кг, под действием центральной силы притяжения, обратно пропорциональной кубу расстояния точки от центра притяжения, при следующих данных: на расстоянии 1 м сила равна 1 Н. В начальный момент расстояние точки от центра притяжения равно 2 м, скорость v0=0,5 м/с и составляет угол 45° с направлением прямой, проведенной из центра к точке.
РЕШЕНИЕ

28.19 Частица M массы 1 кг притягивается к неподвижному центру O силой, обратно пропорциональной пятой степени расстояния. Эта сила равна 8 Н на расстоянии 1 м. В начальный момент частица находится на расстоянии OM0=2 м и имеет скорость, перпендикулярную к OM0 и равную 0,5 м/с. Определить траекторию частицы.
РЕШЕНИЕ

28.20 Точка массы 0,2 кг, движущаяся под влиянием силы притяжения к неподвижному центру по закону тяготения Ньютона, описывает полный эллипс с полуосями 0,1 м и 0,08 м в течение 50 c. Определить наибольшую и наименьшую величины силы притяжения F при этом движении.
РЕШЕНИЕ

28.21 Математический маятник, каждый размах которого длится одну секунду, называется секундным маятником и применяется для отсчета времени. Найти длину l этого маятника, считая ускорение силы тяжести равным 981 см/с2. Какое время покажет этот маятник на Луне, где ускорение силы тяжести в 6 раз меньше земного? Какую длину l1 должен иметь секундный лунный маятник?
РЕШЕНИЕ

28.22 В некоторой точке Земли секундный маятник отсчитывает время правильно. Будучи перенесен в другое место, он отстает на T секунд в сутки. Определить ускорение силы тяжести в новом положении секундного маятника.

Для вычисления М. к. д. k материальной точки относительно центра О или оси z справедливы все формулы, приведённые для вычисления момента силы, если в них заменить вектор F вектором количества движения mv . Т. о.,k o = [r · ], где r - радиус-вектор движущейся точки, проведённый из центра О , a k z равняется проекции вектора k o на ось z , проходящую через точку О . Изменение М. к. д. точки происходит под действием момента m o (F ) приложенной силы и определяется теоремой об изменении М. к. д., выражаемой уравнением dk o /dt = m o (F ). Когда m о (F ) = 0, что, например, имеет место для центральных сил, движение точки подчиняется Площадей закону.

Главный М. к. д . (или кинетический момент) механической системы относительно центра О или оси z равен соответственно геометрической или алгебраической сумме М. к. д. всех точек системы относительно того же центра или оси, т. е. K o = Σk oi , K z = Σk zi . Вектор K o может быть определён его проекциями K x , K y , K z на координатные оси. Для тела, вращающегося вокруг неподвижной оси z с угловой скоростью ω, K x = - I xz ω, K y = -I yz ω, K z = I z ω, где l z - осевой, а I xz , l yz - центробежные моменты инерции.

Если ось z является главной осью инерции для начала координат О, то K o = I z ω.

Изменение главного М. к. д. системы происходит под действием только внешних сил и зависит от их главного момента M o e . Эта зависимость определяется теоремой об изменении главного М. к. д. системы, выражаемой уравнением dK o /dt = M o e . Аналогичным уравнением связаны моменты K z и M z e . Если M o e = 0 или M z e = 0, то соответственно K o или K z будут величинами постоянными, т. е. имеет место закон сохранения М. к. д.

Билет 20

Общее уравнение динамики.

Общее уравнение динамики – при движении системы с идеальными связями в каждый данный момент времен сумма элементарных работ всех приложенных активных сил и всех сил инерции на любом возможном перемещении системы будет равна нулю. Уравнение использует принцип возможных перемещений и принцип Даламбера и позволяет составить дифференциальные уравнения движения любой механической системы. Дает общий метод решения задач динамики. Последовательность составления: а) к каждому телу прикладывают действующие на него задаваемые силы, а также условно прикладывают силы и моменты пар сил инерции; б) сообщают системе возможные перемещения; в) составляют уравнения принципа возможных перемещений, считая систему находящейся в равновесии.

Потенциальная сила. Работа потенциальной силы на конечном перемещении.

Потенциальная сила - сила, работа которой зависит только от начального и конечного положения точки её приложения и не зависит ни от вида траектории, ни от закона движения этой точки

Работа потенциальной силы равна разности значений силовой функции в конечной и начальной точках пути и от вида траектории движущейся точки не зависит.

Основным свойством потенциального силового поля и является то, что работа сил поля при движении в нем материальной точки зависит только от начального и конечного положений этой точки и ни от вида ее траектории, ни от закона движения не зависит.

Билет 21

Принцип виртуальных (возможных) перемещений.

Существуют две различные формулировки принципа возможных перемещений. В одной формулировке утверждается, что для равновесия материальной системы необходимо, чтобы равнялась нулю сумма элементарных работ всех внешних сил, приложенных к системе, на любом возможном перемещении.
В другой формулировке, наоборот, говорится, что система должна находиться в равновесии, чтобы сумма элементарных работ всех сил равнялась нулю. Такое определение этого принципа дается, например, в работе: “Виртуальная работа заданных сил, приложенных к системе с идеальными связями и находящейся в равновесии, равна нулю”.
Математически принцип возможных перемещений представляется в виде:
, (1)
где - скалярное произведение вектора силы и вектора виртуального перемещения.

Мощность пары сил

Парой сил называется система двух равных по модулю, параллельных и направленных в противоположные стороны сил, действующих на абсолютно твердое тело.

Мощность пары сил:

,

где омега Z – проекция угловой скорости на ось вращения.

Билет 22

1.Прнцип виртуальных перемещений
Рассмотрим виртуальное перемещение точки системы с номером i. Виртуальным перемещением δr i называется мысленное бесконечно малое перемещение точки, допускаемое связями без их разрушения в данное фиксированное мгновение времени.

Если связь одна и описывается уравнением (2), физически ясно, что связь не нарушится, когда вектор виртуального перемещения

где grad f - градиент функции (2) при фиксированном t , перпендикулярный поверхности связи в месте нахождения точки, равный

В вариационном исчислении бесконечно малые величины δr i , δx i , δy i , δz i называются вариациями функций r i , x i , y i , z i . Изменения координат точек или уравнений связи при неизменном времени находятся синхронным варьированием, которое осуществляется согласно левым частям формул (4) и (6).

То есть проекции δx i , δy i , δz i виртуального перемещения точки δr обращают в нуль первую вариацию уравнения связи при условии, что время не варьируется (синхронное варьирование):

(7)

Следовательно, виртуальное перемещение точки не характеризует ее движение, а определяет связь или, в общем случае, связи, наложенные на точку системы. Таким образом, виртуальные перемещения позволяют учесть эффект механических связей, не вводя реакции связей, как мы это делали раньше, и получать уравнения равновесия или движения системы в аналитическом виде, не содержащие неизвестных реакций связей.

2.Элементарная работа
Элементарная работа сил , действующих на абсолютно твердое тело, равна алгебраической сумме двух слагаемых: работы главного вектора этих сил на элементарном поступательном перемещении тела вместе с произвольно выбранным полюсом и работы главного момента сил, взятого относительно полюса, на элементарном вращательном перемещении тела вокруг полюса. [1 ]

Элементарная работа силы равна скалярному произведению силы на дифференциал радиуса-вектора точки приложения силы. [2 ]

Элементарная работа сил при этом зависит от выбора возможного перемещения системы. [3 ]

Элементарная работа силы при вращении тела, на которое сила действуе

Билет 23

1. Принцип виртуальных перемещений в обобщенных координатах.

Запишем принцип, выражая виртуальную работу активных сил системы в обобщенных координатах:

Так как на систему наложены голономные связи, вариации обобщенных координат не зависят между собой и не могут быть одновременно равны нулю. Поэтому последнее равенство выполнится только тогда, когда коэффициенты при δ j (j = 1 ÷ s) одновременно обращаются в нуль, то есть

2.Работа силы на конечном перемещении
Работа
силы на конечном перемещении определяется как интегральная сумма элементарных Работа и при перемещении M 0 M 1 выражается криволинейным интегралом:

Билет 24

1.уравнение Лагранжа второго рода.

Для вывода уравнений запишем принцип Даламбера-Лагранжа в обобщенных координатах в виде -Q j u = Q j (j = 1 ÷ s) .

Принимая во внимание, что Ф i = -m i a i = -m i dV i / dt , получаем:

(1)

(2)

Подставляя (2) в (1) получаем дифференциальное уравнение движения системы в обобщенных координатах, которое названо уравнением Лагранжа второго рода:

(3)

то есть, материальная система с голономными связями описывается уравнениями Лагранжа второго рода по всем s обобщенным координатам.

Отметим важные особенности полученных уравнений.

1. Уравнения (3) - это система обыкновенных дифференциальных уравнений второго порядка относительно s неизвестных функций q j (t), полностью определяющих движение системы.

2. Число уравнений равно числу степеней свободы, то есть движение любой голономной системы описывается наименьшим числом уравнений.

3. В уравнения (3) не нужно включать реакции идеальных связей, что позволяет, находя закон движения несвободной системы, выбором обобщенных координат исключить задачу определения неизвестных реакций связей.

4. Уравнения Лагранжа второго рода позволяют указать единую последовательность действий для решения многих задач динамики, которую часто называют формализмом Лагранжа.

2. Условие относительного покоя материальной точки получают из динамического уравнения Кориолиса, подставив в это уравнение значения относительного ускорения и кориолисовой силы инерции равные нулю:

Хотя до сих пор. мы рассматривали только специальный случай твердого тела, свойства момента и его математическое выражение интересны даже тогда, когда тело не твердое. Можно доказать очень интересную теорему: подобно тому как внешняя сила равна скорости изменения величины р, которая называется полным импульсом системы частиц, так и момент силы равен скорости изменения некоторой величины L , называемой моментом количества движения, или угловым моментом группы частиц.
Чтобы доказать это, рассмотрим систему частиц, на которую действуют силы, и посмотрим, что произойдет с системой в результате действия вращающих моментов, созданных этими силами. Для начала давайте возьмем только одну частицу. Такая частица с массой m и осью О изображена на фиг. 18.3. Она не обязательно должна вращаться по окружности вокруг оси О, а может двигаться и по эллипсу, подобно планете вокруг Солнца, или по какой-нибудь другой кривой.

Главное то, что она движется, что на нее действует сила, которая ускоряет ее в соответствии с обычными законами: x -компонента силы равна массе, умноженной на х-компоненту ускорения, и т. д. Но посмотрим теперь, как действует момент силы. Он, как вы знаете, равен xF y - yF x , а х- и y -компоненты силы в свою очередь равны массе, умноженной соответственно на х- и y -компоненту ускорения, так что

Хотя сразу и не_видно, что это выражение является производной от какой-то простой величины, но на самом деле оно

равно производной от xm(dy/ dt)-ym(dx/ dt)\ Действительно,

Оказывается, таким образом, что момент силы равен скорости изменения со временем некоторой величины! Давайте обратим внимание на эту величину и прежде всего дадим ей имя. Она будет называться моментом количества движения, или угловым моментом, и обозначаться буквой L

Хотя во всех наших рассмотрениях мы не принимали в расчет теорию относительности, тем не менее второе выражение для L верно и при учете ее. Итак, мы нашли, что у обычного импульса также существует вращательный ана- лог - угловой момент, который связан с компонентами импульса точно так же, как и момент силы связан с компонентами силы! Так что если мы хотим вычислить момент количества движения относительно какой-то оси, то должны взять тангенциальную составляющую импульса и умножить ее на радиус. Другими словами, угловой момент показывает, насколько быстро движется частица вокруг какого-то центра, ведь он учитывает только тангенциальную часть импульса. Более того, чем дальше от центра удалена линия, по которой направлен импульс, тем больше будет угловой момент. Точно так же, поскольку геометрия в этом случае та же, что и в случае момента силы, существует плечо импульса (оно, разумеется, не совпадает с плечом силы, действующей на частицу), которое равно расстоянию линии импульса от оси. Таким образом, угловой момент равен просто величине импульса, умноженного на его плечо. Точно так же, как и для момента силы, для углового момента мы можем написать следующие три формулы:

Момент количества движения, как и момент силы, зависит от положения оси, относительно которой он вычисляется.
Прежде чем перейти к рассмотрению более чем одной частицы, применим полученные выше результаты к движению планеты вокруг Солнца. В каком направления действует сила? Конечно, по направлению к Солнцу. А какой при этом будет момент силы? Разумеется, все зависит от того, в каком месте мы выберем ось, однако результат получится совсем простым, если в качестве точки вращения выбрать само Солнце. Поскольку момент силы равен силе, умноженной на ее плечо, или компоненте силы, перпендикулярной к радиусу r , умноженной на r , то в этом случае нет никакой тангенциальной составляющей силы, а поэтому момент силы относительно оси, проходящей через Солнце, равен нулю. Следовательно, момент количества движения должен оставаться постоянным. Давайте-ка посмотрим, что это означает. Произведение тангенциальной компоненты скорости на массу и радиус, будучи моментом количества движения, должно оставаться постоянным, потому что скорость его изменения есть момент силы, который в нашем случае равен нулю. Это означает что остается постоянным произведение тангенциальной компоненты скорости на радиус, поскольку масса-то уж, конечно, не изменяется. Но такая величина, характеризующая движение планеты, уже вычислялась нами раньше. Предположим, что мы взяли маленький промежуток времени ∆ t. Какое расстояние пройдет планета при своем движении из точки Р в толку Q (фиг. 18.3)? Как велика площадь той области, которую «заметает» прямая, соединяющая планету с Солнцем? Пренебрегая площадью QQ’P, которая очень мала по сравнению с OPQ, находим, что площадь этой области равна половине основания PQ, умноженного на высоту OR. Другими словами, «заметенная» площадь равна половине произведения скорости на ее плечо. Так что скорость изменения этой площади пропорциональна моменту количества движения, который остается постоянным. Итак, мы получим, что закон Кеплера о равных площадях за равные промежутки времени является просто словесным описанием закона сохранения момента количества движения, когда моменты внешних сил отсутствуют.

Количество движения (mV) - величина векторная, т.е. имеет определенное направление относительно выбранной точки отсчета (например, оси координат) или оси вращения. Основное уравнение динамики вращательного движения

можно также записать в виде

Здесь С/оо) имеет смысл аналога физической величины (mV) количества движения. Силовой момент М = Ph тогда с учетом (7.14)

Величину L можно рассматривать как момент количества движения (mV) относительно данной точки или оси. Она называется кинетическим моментом. Здесь h - кратчайшее расстояние от линии действия вектора mV по часовой стрелке. В общем случае

Знак «-» берется в случае вращения вектора mV по часовой стрелке.

Для пространственной системы момент количества движения материальной точки относительно оси, перпендикулярной к данной плоскости и проходящей через заданную точку 0, равен проекции момента количества движения. Например, для оси z: L z = L 0 cos а, где а - угол между данной плоскостью и радиус-вектором данной точки (расстояние от материальной точки до центра «0»).

Величина L относительно прямоугольных осей координат определяется проекциями скоростей на эти оси и координатами движущейся материаль-


Рис. 7.1.

ной точки. Например, в плоскости хОу (рис. 7.1) момент количества движения относительно оси z (перпендикулярной данной плоскости)

здесь L, и L 2 - моменты, создаваемые проекциями количества движения mV относительно точки 0.

По физическому смыслу производная - сумма моментов сил,

действующих на материальную точку, относительно выбранной оси координат. При JM i = 0, величина L = const, т.е. если момент равнодействующей силы равен нулю , то момент количества движения относительно выбранной оси остается постоянным.

Рис. 7.2.

Например, для точечного тела М с массой т величина L z = 0, если на тело действует сила Р, направленная к началу координат, так как моменты силы Р и силы тяжести mg (параллельной оси z, рис. 7.2) равны нулю. Здесь L z = mxV = const.

Если направление скорости V 0 все время перпендикулярно радиусу г, величина которого при перемещении точки М 2 уменьшается, то из равенства L z = const следует увеличение скорости точки М при приближении к точке О.

По аналогии с главным моментом сил можно вывести понятие: главный момент количества движения i 0 механической системы (или кинетический момент), относительно заданного центра, который равен геометрической сумме величин L 0j всех материальных точек данной системы относительно этого центра, т.е.

Кинетический момент механической системы относительно оси (например оси г) равен алгебраической сумме моментов количества движения всех точек данной системы: L 0 = X L iz .

Очевидно, что производная от кинетического момента по времени равна главному моменту внешних сил, действующих на данную механическую систему (относительно выбранного центра), т.е.

Отсюда следует закон сохранения кинетического момента механической системы относительно оси

т.е. кинетический момент в данном случае остается постоянным.

Изменения кинетического момента механической системы при ударе вытекает как следствие из рассмотрения вышеизложенных понятий об импульсе силы и моментах количества движения и определяется выражениями (7.17) и (7.18). Так, например, при ударе изменение кинетического момента системы относительно любой оси равно сумме моментов внешних импульсов сил относительно данной оси. Если к точкам механической системы приложены только внутренние силовые импульсы, то кинетический момент системы при ударе не изменяется.

Рассказать друзьям