Теоретический материал. Вычисление производных неявных функций, заданных системой уравнений

💖 Нравится? Поделись с друзьями ссылкой

Пусть функция задана неявным образом с помощью уравнения
(1) .
И пусть это уравнение, при некотором значении , имеет единственное решение . Пусть функция является дифференцируемой функцией в точке , причем
.
Тогда, при этом значении , существует производная , которая определяется по формуле:
(2) .

Доказательство

Для доказательства рассмотрим функцию как сложную функцию от переменной :
.
Применим правило дифференцирования сложной функции и найдем производную по переменной от левой и правой частей уравнения
(3) :
.
Поскольку производная от постоянной равна нулю и , то
(4) ;
.

Формула доказана.

Производные высших порядков

Перепишем уравнение (4), используя другие обозначения:
(4) .
При этом и являются сложными функциями от переменной :
;
.
Зависимость определяет уравнение (1):
(1) .

Находим производную по переменной от левой и правой части уравнения (4).
По формуле производной сложной функции имеем:
;
.
По формуле производной произведения :

.
По формуле производной суммы :


.

Поскольку производная правой части уравнения (4) равна нулю, то
(5) .
Подставив сюда производную , получим значение производной второго порядка в неявном виде.

Дифференцируя, аналогичным образом, уравнение (5), мы получим уравнение, содержащее производную третьего порядка :
.
Подставив сюда найденные значения производных первого и второго порядков, найдем значение производной третьего порядка.

Продолжая дифференцирование, можно найти производную любого порядка.

Примеры

Пример 1

Найдите производную первого порядка от функции, заданной неявно уравнением:
(П1) .

Решение по формуле 2

Находим производную по формуле (2):
(2) .

Перенесем все переменные в левую часть, чтобы уравнение приняло вид .
.
Отсюда .

Находим производную по , считая постоянной.
;
;
;
.

Находим производную по переменной , считая переменную постоянной.
;
;
;
.

По формуле (2) находим:
.

Мы можем упростить результат если заметим, что согласно исходному уравнению (П.1), . Подставим :
.
Умножим числитель и знаменатель на :
.

Решение вторым способом

Решим этот пример вторым способом. Для этого найдем производную по переменной левой и правой частей исходного уравнения (П1).

Применяем :
.
Применяем формулу производной дроби :
;
.
Применяем формулу производной сложной функции :
.
Дифференцируем исходное уравнение (П1).
(П1) ;
;
.
Умножаем на и группируем члены.
;
.

Подставим (из уравнения (П1)):
.
Умножим на :
.

Ответ

Пример 2

Найти производную второго порядка от функции , заданной неявно с помощью уравнения:
(П2.1) .

Решение

Дифференцируем исходное уравнение, по переменной , считая что является функцией от :
;
.
Применяем формулу производной сложной функции.
.

Дифференцируем исходное уравнение (П2.1):
;
.
Из исходного уравнения (П2.1) следует, что . Подставим :
.
Раскрываем скобки и группируем члены:
;
(П2.2) .
Находим производную первого порядка:
(П2.3) .

Чтобы найти производную второго порядка, дифференцируем уравнение (П2.2).
;
;
;
.
Подставим выражение производной первого порядка (П2.3):
.
Умножим на :

;
.
Отсюда находим производную второго порядка.

Ответ

Пример 3

Найти производную третьего порядка при от функции , заданной неявно с помощью уравнения:
(П3.1) .

Решение

Дифференцируем исходное уравнение по переменной считая, что является функцией от .
;
;
;
;
;
;
(П3.2) ;

Дифференцируем уравнение (П3.2) по переменной .
;
;
;
;
;
(П3.3) .

Дифференцируем уравнение (П3.3).
;
;
;
;
;
(П3.4) .

Из уравнений (П3.2), (П3.3) и (П3.4) находим значения производных при .
;
;
.

Как известно, неявно заданная функция одной переменной определяется так: функция у независимой переменной x называется неявной, если она задана уравнением, не разрешенным относительно y:

Пример 1.11.

Уравнение

неявно задаёт две функции:

А уравнение

не задаёт никакой функции.

Теорема 1.2 (существования неявной функции).

Пусть функция z =f(х,у) и ее частные производные f"x и f"y определены и непрерывны в некоторой окрестности UM0 точки M0(x0y0). Кроме того, f(x0,y0)=0 и f"(x0,y0)≠0, тогда уравнение (1.33) определяет в окрестности UM0 неявную функцию y= y(x), непрерывную и дифференцируемую в некотором интервале D с центром в точке x0, причем y(x0)=y0.

Без доказательства.

Из теоремы 1.2 следует, что на этом интервале D:

то- есть имеет место тождество по

где "полная" производная находится согласно (1.31)

То есть (1.35) дает формулу нахождения производной неявно заданной функции одной переменной x .

Аналогично определяется и неявная функция двух и более переменных.

Например, если в некоторой области V пространства Oxyz выполняется уравнение:

то при некоторых условиях на функцию F оно неявно задаёт функцию

При этом по аналогии с (1.35) ее частные производные находятся так:

Пример 1.12. Считая, что уравнение

неявно задаёт функцию

найти z"x, z"y.

поэтому согласно (1.37) получаем ответ.

11.Использование частных производных в геометрии.

12.Экстремумы функции двух переменных.

Понятие максимума, минимума, экстремума функции двух переменных аналогичны соответствующим понятиям функции одной независимой переменной (см. п. 25.4).

Пусть функция z = ƒ(х;у) определена в некоторой области D, точка N(x0;y0) Î D.

Точка (х0;у0) называется точкой максимума функции z=ƒ(х;у), если существует такая d-окрестность точки (х0;у0), что для каждой точки (х;у), отличной от (хо;уо), из этой окрестности выполняется неравенство ƒ(х;у)<ƒ(хо;уо).

Аналогично определяется точка минимума функции: для всех точек (х; у), отличных от (х0;у0), из d-окрестности точки (хо;уо) выполняется неравенство: ƒ(х;у)>ƒ(х0;у0).

На рисунке 210: N1 - точка максимума, а N2 - точка минимума функции z=ƒ(x;у).

Значение функции в точке максимума (минимума) называется максимумом (минимумом) функции. Максимум и минимум функции называют ее экстремумами.

Отметим, что, в силу определения, точка экстремума функции лежит внутри области определения функции; максимум и минимум имеют локальный (местный) характер: значение функции в точке (х0;у0) сравнивается с ее значениями в точках, достаточно близких к (х0; у0). В области D функция может иметь несколько экстремумов или не иметь ни одного.

46.2. Необходимые и достаточные условия экстремума

Рассмотрим условия существования экстремума функции.

Теорема 46.1 (необходимые условия экстремума). Если в точке N(x0;y0) дифференцируемая функция z=ƒ(х;у) имеет экстремум, то ее частные производные в этой точке равны нулю: ƒ"x(х0;у0)=0, ƒ"y(х0;у0)=0.

Зафиксируем одну из переменных. Положим, например, у=у0. Тогда получим функцию ƒ(х;у0)=φ(х) одной переменной, которая имеет экстремум при х = х0. Следовательно, согласно необходимому условию экстремума функции одной переменной (см. п. 25.4), φ"(х0) = 0, т. е. ƒ"x(х0;y0)=0.

Аналогично можно показать, что ƒ"y(х0;у0) = 0.

Геометрически равенства ƒ"x(х0;у0)=0 и ƒ"y(х0;у0)=0 означают, что в точке экстремума функции z=ƒ(х;у) касательная плоскость к поверхности, изображающей функцию ƒ(х;у), параллельна плоскости Оху, т. к. уравнение касательной плоскости есть z=z0 (см. формулу (45.2)).

Замечание. Функция может иметь экстремум в точках, где хотя бы одна из частных производных не существует. Например, функцияимеет максимум в точке О(0;0) (см. рис. 211), но не имеет в этой точке частных производных.

Точка, в которой частные производные первого порядка функции z ≈ ƒ(х; у) равны нулю, т. е. f"x=0, f"y=0, называется стационарной точкой функ ции z.

Стационарные точки и точки, в которых хотя бы одна частная производная не существует, называются критическими точками.

В критических точках функция может иметь экстремум, а может и не иметь. Равенство нулю частных производных является необходимым, но не достаточным условием существования экстремума. Рассмотрим, например, функцию z = ху. Для нее точка О(0; 0) является критической (в ней z"x=у и z"y - х обращаются в ноль). Однако экстремума в ней функция z=ху не имеет, т. к. в достаточно малой окрестности точки О(0; 0) найдутся точки для которых z>0 (точки I и III четвертей) и z < 0 (точки II и IV четвертей).

Таким образом, для нахождения экстремумов функции в данной области необходимо каждую критическую точку функции подвергнуть дополнительному исследованию.

Теорема 46.2 (достаточное условие экстремума). Пусть в стационарной точке (хо;уо) и некоторой ее окрестности функция ƒ(х;у) имеет непрерывные частные производные до второго порядка включительно. Вычислим в точке (х0;у0) значения A=f""xx(x0;y0), В=ƒ""xy(х0;у0), С=ƒ""уy(х0;у0). Обозначим

1. если Δ > 0, то функция ƒ(х;у) в точке (х0;у0) имеет экстремум: максимум, если А < 0; минимум, если А > 0;

2. если Δ < 0, то функция ƒ(х;у) в точке (х0;у0) экстремума не имеет.

В случае Δ = 0 экстремум в точке (х0;у0) может быть, может не быть. Необходимы дополнительные исследования.

ЗАДАЧИ

1.

Пример. Найти промежутки возрастания и убывания функции . Решение. Первым шагом является нахождение обрасти определения функции . В нашем примере выражение в знаменателе не должно обращаться в ноль, следовательно, . Переходим к производной функции: Для определения промежутков возрастания и убывания функции по достаточному признаку решаем неравенства и на области определения. Воспользуемся обобщением метода интервалов. Единственным действительным корнем числителя является x = 2 , а знаменатель обращается в ноль при x = 0 . Эти точки разбивают область определения на интервалы, в которых производная функции сохраняет знак. Отметим эти точки на числовой прямой. Плюсами и минусами условно обозначим интервалы, на которых производная положительна или отрицательна. Стрелочки снизу схематично показывают возрастание или убывание функции на соответствующем интервале. Таким образом, и . В точке x = 2 функция определена и непрерывна, поэтому ее следует добавить и к промежутку возрастания и к промежутку убывания. В точке x = 0 функция не определена, поэтому эту точку не включаем в искомые интервалы. Приводим график функции для сопоставления с ним полученных результатов. Ответ: функция возрастает при , убывает на интервале (0; 2] .

2.

Примеры .

    Установить интервалы выпуклости и вогнутости кривой y = 2 – x 2 .

Найдем y "" и определим, где вторая производная положительна и где отрицательна. y " = –2x , y "" = –2 < 0 на (–∞; +∞), следовательно, функция всюду выпукла.

    y = e x . Так как y "" = e x > 0 при любых x , то кривая всюду вогнута.

    y = x 3 . Так как y "" = 6x , то y "" < 0 при x < 0 и y "" > 0 при x > 0. Следовательно, при x < 0 кривая выпукла, а при x > 0 вогнута.

3.

4. Дана функция z=x^2-y^2+5x+4y, вектор l=3i-4j и точка А(3,2). Найти dz/dl (я так понял производная функции по направлению вектора), gradz(A), |gradz(A)|. Найдем частные производные: z(по х)=2x+5 z(по y)=-2y+4 Найдем значения производных в точке А(3,2): z(по х)(3,2)=2*3+5=11 z(по y)(3,2)=-2*2+4=0 Откуда, gradz(A)=(11,0)=11i |gradz(A)|=sqrt(11^2+0^2)=11 Производная функции z по направлению вектора l: dz/dl=z(по х)*cosa+z(по у)*cosb, a,b-углы вектора l с осями координат. cosa=lх/|l|, cosb=ly/|l|, |l|=sqrt(lx^2+ly^2) lx=3, ly=-4, |l|=5. cosa=3/5, cosb=(-4)/5. dz/dl=11*3/5+0*(-4)/5=6,6.

Дана система уравнений

или кратко F (x , y )=0 (1)

Определение. Система (1) определяет неявно заданную функцию y = f (x ) на D R n

,

если x D : F (x , f (x )) = 0.

Теорема (существование и единственность отображения, неявно заданного системой уравнений). Пусть

Тогда в некоторой окрестности U (x 0 ) существует единственная функция (отображение), определенная в этой окрестности y = f (x ), такая, что

x U (x 0 ) : F (x , f (x ))=0 и y 0 = f (x 0 ).

Эта функция непрерывно дифференцируема в некоторой окрестности точки x 0 .

5.Вычисление производных неявных функций, заданных системой уравнений

Дана система

(1)

Будем предполагать, что выполнены условия теоремы существования и единственности неявной функции, заданной этой системой уравнений. Обозначим эту функцию y = f (x ) . Тогда в некоторой окрестности точки x 0 справедливы тождества

(F(x, f(x))=0) (2)

Дифференцируя эти тождества по x j получим

=0 (3)

Эти равенства можно записать в матричном виде

, (3)

или в развернутом виде

.

Отметим, что переход от равенства F (x , f (x ))=0 к
, соответствует правилам дифференцирования для случая, когда x и y являются точками одномерного пространства. Матрица по условию не вырождена, поэтому матричное уравнение
имеет решение
. Таким образом можно найти частные производные первого порядка неявных функций. Для нахождения дифференциалов обозначим

dy = ,dx = , дифференцируя равенства(2) получим

=0 ,

или в матричном виде

. (4)

В развернутом виде

.

Также как и в случае частных производных, формула (4) имеем такой же вид, как и для случая одномерных пространств n =1, p =1. Решение этого матричного уравнения запишется в виде
. Для нахождения частных производных второго порядка нужно будет дифференцировать тождества(3) (для вычисления дифференциалов второго порядка дифференцировать нужно тождества (4) ). Таким образом, получим

,

где через A обозначены слагаемые, не содержащие искомые
.

Матрицей коэффициентов этой системы для определения производных
служит матрица Якоби.

Аналогичную формулу можно получить для дифференциалов. В каждом из этих случаев будет получаться матричное уравнение с той же матрицей коэффициентов в системе уравнений для определения искомых производных или дифференциалов. То же самое будет происходить и при следующих дифференцированиях.

Пример 1. Найти ,,в точкеu =1, v =1.

Решение. Дифференцируем заданные равенства

(5)

Отметим, что по постановке задачи, независимыми переменными мы должны считать x , y . Тогда функциями будут z , u , v . Таким образом, систему (5) следует решать относительно неизвестных du , dv , dz . В матричном виде это выглядит следующим образом

.

Решим эту систему, используя правило Крамера. Определитель матрицы коэффициентов

, Третий «замещенный» определитель для dz будет равен (его вычисляем разложением по последнему столбцу)

, тогда

dz =
, и
,
.

Дифференцируем (5) еще раз (x , y независимые переменные)

Матрица коэффициентов системы та же самая, третий определитель

Решая эту систему, получим выражение для d 2 z откуда можно будет найти нужную производную.

Рассказать друзьям