MES-системы в дискретном производстве. Зачем гиганту MES-система

💖 Нравится? Поделись с друзьями ссылкой

MES - информационная и коммуникационная система производственной среды предприятия.

Лекция 6. Исполнительные производственные системы MES

MES - автоматизированная система управления производственной деятельностью предприятия. Задачи и функции MES. Область применения.

Система MES (Manufacturing Execution System) - это система управления производством, которая связывает воедино все бизнес-процессы предприятия с производственными процессами, оперативно поставляет объективную и подробную информацию руководству. Кроме того, система MES проводит анализ и определяет наиболее эффективное решение проблемы - например, для конкретного руководителя таким решением может быть переход на другие источники сырья, внедрение систем автоматизации в определенные точки технологического процесса, изменение графика поставок или сокращение ручного труда.

По определению APICS (American Production and Inventory Control Society) MES - это информационная и коммуникационная система производственной среды предприятия. Более развернутым является определение, принятое в некоммерческой ассоциации MESA (Manufacturing Enterprise Solutions Association), объединяющей производителей и консультантов-внедренцев MES-систем:

MES - это автоматизированная система управления производственной деятельностью предприятия, которая в режиме реального времени: планирует, оптимизирует, контролирует, документирует производственные процессы от начала формирования заказа до выпуска готовой продукции. [ 1 ]

Системы MES определяются как совокупность программных функций, отличающихся от функций систем планирования ресурсов предприятия (ERP), автоматизированного проектирования и программирования (CAD/CAM) и автоматизированных систем управления технологическим процессом (АСУТП). Aссоциация MESA определила 11 основных функций MES:

1. Контроль состояния и распределение ресурсов (RAS). В рамках этой функции обеспечивается управление ресурсами производства (машинами, инструментальными средствами, методиками работ, материалами) и другими объектами, например, документами о порядке выполнения каждой производственной операции. Правильность настройки оборудования в производственном процессе, а также его состояние отслеживается в режиме реального времени.

2. Оперативное детальное планирование (ODS). Эта функция обеспечивает оперативное и детальное планирование работы, основанное на характеристиках и свойствах конкретного продукта, а также детально и оптимально вычисляет загрузку оборудования при работе конкретной смены.

3. Диспетчеризация производства (DPU). Обеспечивает текущий мониторинг и диспетчеризацию процесса производства, отслеживая выполнение операций, занятость оборудования и людей, выполнение заказов, объемов, партий и контролирует в реальном времени выполнение работ в соответствии с планом; позволяет отслеживать все происходящие изменения в режиме реального времени и вносить корректировки в план цеха.



4. Управление документами (DOC). Обеспечивает прохождение документов, которые должны сопровождать выпускаемое изделие, включая инструкции и нормативы работ, чертежи, программы обработки деталей, записи партий продукции, сообщения о технических изменениях. Организует передачу информации от смены к смене, а также позволяет вести плановую и отчетную цеховую документацию.

5. Сбор и хранение данных (DCA). Функция обеспечивает информационное взаимодействие различных производственных подсистем для получения, накопления и передачи технологических и управляющих данных, циркулирующих в производственной среде предприятия.

6. Управление персоналом (LM). Формирует отчеты о времени и присутствии на рабочем месте, обеспечивает слежение за соответствием сертификации. Позволяет учитывать и контролировать основные, дополнительные и совмещаемые обязанности персонала, такие как выполнение подготовительных операций, расширение зоны работы.

7. Управление качеством продукции (QM) . Предоставляет данные измерений о качестве продукции, собранные с производственного уровня, позволяет проводить анализ корреляционных зависимостей и статистических данных причинно-следственных связей контролируемых событий.

8. Управление производственными процессами (PM). Отслеживает заданный производственный процесс, а также автоматически вносит корректировку или предлагает соответствующее решение оператору для исправления или повышение качества текущих работ.

9. Управление производственными фондами (техобслуживание) (MM) . Поддержка процесса технического обслуживания, ремонта производственного и технологического оборудования и инструментов в течение всего производственного процесса.

10. Отслеживание истории продукта (PTG) . Предоставляет информацию, связанную с продукцией: отчет о персонале, работающем с этим видом продукции, компоненты продукции, материалы от поставщика, партию, серийный номер, текущие условия производства, индивидуальный технологический паспорт изделия.

11. Анализ производительности (PA) . Формирует отчеты о реальных результатах производственных операций, а также сравнивает с предыдущими и ожидаемыми результатами. Например, использование ресурсов, наличие ресурсов, время производственного цикла, соответствие плану, стандартам и другие.

Одиннадцать вышеперечисленных обобщённых функций, которые определены MESA International , позволяют судить о предназначении систем оперативного управления класса MES. Получая информацию непосредственно с производства, такого рода система позволяет: контролировать и при необходимости немедленно корректировать производственное расписание (что невозможно в ERP-системе), обеспечить связь между производственными и бизнес-процессами и, наконец, собирать и передавать в ERP-систему данные о текущих производственных показателях в режиме реального времени.

Система управления производствомкласса MES - это связующее звено между ориентированными на хозяйственные операции ERP-системами, системами планирования цепочки поставок и деятельностью в реальном масштабе времени на уровне производства. По своей сути и назначению система оперативного управления производством является программной прослойкой, позволяющей объединить различные уровни управления компанией в единый информационный комплекс. Иерархия уровней управления предприятием и соответствующих им автоматизированных систем управления представлены на рис.1.

Безусловным преимуществом и отличительной особенностью этой системы является возможность управления производственным процессом в реальном времени, осуществления «ежеминутного» контроля состояния производственного процесса. MES позволяет создавать гибкую информационную инфраструктуру, чрезвычайно быстро реагирующую на любые изменения в продукции, производственном процессе, составе рабочей силы и содержании рабочих процедур, обеспечивая оперативность управления и адаптативность производственной системы предприятия. Основными функциями MES-систем из перечисленных выше являются – оперативно-календарное планирование (детальное планирование) и диспетчеризация производственных процессов в цеху. Именно эти две функции определяют MES-систему как систему оперативного характера, нацеленную на формирование расписаний работы оборудования и оперативное управление производственными процессами в цеху. Цель MES-системы – не только выполнить заданный объем с указанными сроками выполнения тех или иных заказов, но выполнить как можно лучше с точки зрения экономических показателей цеха. На каждое рабочее место формируется детализированное (с указанием сроков начала/ окончания каждой операции) плановое задание, соответствующее оптимальному производственному расписанию выполняемых работ. Пример планового задания на рабочее место представлен на рисунке 2.
Рисунок 2 – Пример детализированного планового задания на рабочее место Любое плановое задание нуждается в диспетчировании, поэтому функции диспетчирования в МЕS – системах отводится особое место. В MES-системах функция DPU реализована в виде специального модуля диспетчирования, с которым работает диспетчер. Задачей диспетчера является фиксация всех событий в производственной системе: моментов действительного окончания обработки партий деталей, отказов оборудования по различным причинам, любых опережений и запаздываний тех или иных процессов и т.п. (рис.3,4). Рисунок 3 – Контур диспетчирования в MES

Далее MES-система, с определенным интервалом времени, автоматически анализирует информацию, полученную с диспетчерских терминалов, и если фактическое состояние дел существенно расходится с плановым заданием (изменяются моменты окончания обработки партий деталей), то диспетчер оповещается системой о наличии данных расхождений.

После принятия решения диспетчером, а это, чаще всего, либо временной сдвиг работ, либо пересчет расписания, скорректированное расписание вновь вступает в работу с обязательным оповещением на те рабочие центры, которых затронули коррективы.

Рисунок 4

3. Применение систем управления производством MES на российских предприятиях

В России системы управления производством - пока относительно новое слово в автоматизации. Для автоматизации решения задач календарного планирования производства в МГТУ «Станкин» был разработан программный продукт «Фобос», который составляет ядро системы управления современным цехом механообработки, интегрируя в единое целое автоматизированную подготовку производства, оперативное календарное планирование, диспетчерский контроль за состоянием обрабатываемых предметов труда в условиях мелкосерийных и единичных производств. MES-система «Фобос» используется в крупном машиностроении, как правило, в паре с «тяжелыми» ERP-системами - BAAN или SAP. Разработчики системы работают над возможностью интеграции также с «1С:Предприятие». Промышленная эксплуатация системы «Фобос» показала, что она позволяет за счёт эффективной организации производства минимизировать нормы материальных и трудовых затрат, повысить фондоотдачу технологического оборудования, снизить себестоимость продукции.

Как комментирует Евгений Фролов, профессор МГТУ "СТАНКИН", разработчик MES-системы «Фобос»: «В задачах управления мелкосерийным и единичным производством, к которому в той или иной мере относятся почти 70% всех машиностроительных предприятий, имеется одна особенность: общемировой среднестатистический коэффициент загрузки технологического оборудования на таких заводах не превосходит значения 0.45. (если, конечно, не применять специального производственного софта для составления, коррекции и диспетчерского контроля производственных расписаний, т.е. MES систем).

Другая система - YSB.Enterprise - предназначена для предприятий СМБ, которым несколько «не по средствам» приобретать тяжелые ERP-системы. YSB.Enterprise работает по принципу двухслойной пирамиды, где MES-система берет на себя функции и верхнего слоя управления.

MES-системы PolyPlan, по мнению разработчика Равиля Загидуллина, доцента УГАТУ (г. Уфа), более всего предназначены для автоматизированных систем механообработки. Хотя могут применяться и для неавтоматизированного производства. Кроме нее, аналогов MES-систем именно для автоматизированного производства (гибкое производство, нтегрированное производство), по его заявлению, на сегодняшний день нет.

Необходимо отметить ещё одно преимущество применяемых систем «Фобос» и «Полиплан»: возможность в процессе оптимизации управленческих решений использовать интегральный критерий, в который могут входить несколько частных критериев, иногда противоречивых. Выбор векторного критерия в системе PolyPlanи системе «ФОБОС» представлен на рис 5.,6

Рисунок 5 - Векторный критерий в MES-системе PolyPlan

Рисунок 6 - Критерии составления производственных расписаний в MES-системе «ФОБОС»

Используя нескольких частных критериях можно создать очень большое количество комбинаций, которые могут пригодиться для самых различных производственных ситуаций. Например, в MES-системе «ФОБОС» имеется возможность получения 100 комбинаций векторных критериев.

В ряде случаев синтез критерия осуществляется в процессе уточнения производственного задания по планированию с учетом технологии того или иного производства – машиностроения, деревообработки (©RFT-Group, www.rft-group.ru, А.Р. Залыгин) и пр.

Системы MES определяются как совокупность программных функций, отличающихся от функций систем планирования ресурсов предприятия (ERP), автоматизированного проектирования и программирования (CAD/САМ) и ав­томатизированных систем управления технологическим процессом (АСУТП).

Ассоциация MESA определила 11 основных функций MES, которые представлены в таблице 1.

Функция Расшифровка функции
1.Контроль со­стояния и рас­пределение ре­сурсов (RAS). Эта функциональность MES-систем обеспечивает управление ресурсами производства (машинами, инструментальными средствами, методиками работ, материалами, оборудованием) и другими объектами, например, доку­ментами о порядке выполнения каждой производственной операции. В рам­ках этой функции описывается детальная история ресурсов и гарантируется правильность настройки оборудования в производственном процессе, а так­же отслеживается состояние оборудования в режиме реального времени.
2. Оперативное/ Детальное планирование (ODS). Эта функция обеспечивает оперативное и детальное планирование работы, основанное на приоритетах, атрибутах, характеристиках и свойствах кон­кретного вида продукции, а также детально и оптимально вычисляет загруз­ку оборудования при работе конкретной смены.
З. Диспетчеризация производства (DPU). Обеспечивает текущий мониторинг и диспетчеризацию процесса производ­ства, отслеживая выполнение операций, занятость оборудования и людей, выполнение заказов, объемов, партий и контролирует в реальном времени выполнение работ в соответствии с планом. В режиме реального времени отслеживаются все происходящие изменения и вносятся корректировки в план цеха.
4. Управление документами (DOC). Контролирует содержание и прохождение документов, которые должны со­провождать выпускаемое изделие, включая инструкции и нормативы работ, способы выполнения, чертежи, процедуры стандартных операций, програм­мы обработки деталей, записи партий продукции, сообщения о технических изменениях, передачу информации от смены к смене, а также обеспечивает возможность вести плановую и отчетную цеховую документацию. Предусматривается архивирование информации.
5. Сбор и хране­ние данных (DCA). Эта функция обеспечивает информационное взаимодействие различных производственных подсистем для получения, накопления и передачи техно­логических и управляющих данных, циркулирующих в производственной среде предприятия. Данные о ходе производства могут вводиться как вруч­ную персоналом, так и автоматически с заданной периодичностью из АСУТП или непосредственно с производственных линий.
6. Управление персоналом (LM) Предоставляет информацию о персонале с заданной периодичностью, вклю­чая отчеты о времени и присутствии на рабочем месте, слежение за соответ­ствием сертификации, а также возможность учитывать и контролировать основные, дополнительные и совмещаемые обязанности персонала, такие как выполнение подготовительных операций, расширение зоны работы.
7. Управление качеством про­дукции (QM) Предоставляет данные измерений о качестве продукции, в том числе и в ре­жиме реального времени, собранные с производственного уровня, обеспечи­вая должный контроль качества и заостряя внимание на критических точках. Может предложить действия по исправлению ситуации в данной точке на основе анализа корреляционных зависимостей и статистических данных причинно-следственных связей контролируемых событий.
8. Управление производствен­ными процес­сами (РМ) Отслеживает заданный производственный процесс, а также автоматически вносит корректировку или предлагает соответствующее решение оператору для исправления или повышение качества текущих работ.
9. Управление производствен­ными фондами (техобслужива­ние) (ММ) Поддержка процесса технического обслуживания, планового и оперативного ремонта производственного и технологического оборудования и инструмен­тов в течение всего производственного процесса.
10. Отслеживали истории про­дукта (PTG) Предоставляет информацию о тон, где и в каком порядке велась работа с данной продукцией. Информация о состоянии может включать в себя: отчет о персонале, работающем с этим видом продукции, компоненты продукции, материалы от поставщика, партию, серийный номер, текущие условия про­изводства, несоответствия установленным нормам, индивидуальный технологический паспорт изделия.
11. Анализ производительности (РА) Предоставляет отчеты о реальных результатах производственных операций, а также сравнивает с предыдущими и ожидаемыми результатами. Представ­ленные отчеты могут включать в себя такие измерения, как использование ресурсов, наличие ресурсов, время цикла производственного ресурса, соот­ветствие плану, стандартам и другие.

И так функции, реализуемые в MES-системах, аналогичны методам управления в ERP-системах, но только в других временных масштабах и с дру­гими объектами контроля и управления. MES - это автоматизированная испол­нительная система производственного уровня, предоставляющая ряд возмож­ностей, которые дополняют и расширяют функции ERP-систем. Используя фактические технологические данные, MES-системы поддерживают всю про­изводственную деятельность предприятия в режиме реального времени. Быст­рый результативный отклик на изменяющиеся условия, в комбинации с ориен­тацией MES на снижение издержек, помогают эффективно управлять производ­ственными операциями и процессами. Кроме того, MES-системы формируют данные о текущих производственных показателях, необходимые для функцио­нирования ERP-систем. Таким образом, MES-система - это связующее звено между ориентированными на финансово-хозяйственные операции ERP-системами и оперативной производственной деятельностью предприятия на уровне цеха, участка или производственной линии.

Системы класса MES нашли широкое распространение в странах с разви­той рыночной экономикой сравнительно недавно, в России количество пред­приятий, использующих эти системы, тем более невелико.

Необходимо учитывать, что автоматизация цехового уровня производства в MES-системе требует от предприятия усилий, которые должны быть направ­лены как на внедрение, так и на дальнейшее поддержание работы системы.

При внедрении MES-системы работы сотрудников предприятия и кон­сультантов меньше или соизмерима с внедрением ERP-системы. Объективно в MES автоматизируются меньше сфер деятельности предприятия (бизнес-процессов), чем в ERP-системе. При использовании MES, на цеховом уровне, вероятно понадобится больше реорганизаций, чем при внедрении ERP. Чтобы воспользоваться таким преимуществом MES, как актуальное производственное расписание на протяжении всей сиены, необходимо оперативно вносить факти­ческие данные об исполнении операций, поломках оборудования и прочих со­бытиях в цехе, влияющих не выполнение плана. Если решено актуализировать план работы каждые 15 минут, то это означает, что фактические данные за прошедшие 15 минут должны быть внесены в систему. В случае ERP в столь оперативном отражении фактов нет необходимости, поскольку перепланирова­ние будет проведено после окончания рабочей смены.

Как уже было сказано, и MES и ERP системы решают приблизительно одинаковые задачи только в разных масштабах: ERP - объемно-календарное планирование, использующее средне- и долгосрочный период времени; MES - оперативное планирование на краткосрочный период времени (минуты, часы). И здесь перед предприятием встает вопрос, какую систему выбрать для реали­зации. Понятно, что наиболее благоприятным было бы внедрение систем обоих типов, но у большинства предприятий не хватит финансовых и людских ресур­сов на одновременную реализацию двух проектов. Поэтому начинать придется с одного, следовательно, предприятие по-прежнему перед выбором. Фирмы, продвигающие соответствующий программный продукт представят большое количество аргументированных доводов и критериев в пользу своей системы, поэтому руководителю предприятия необходимо взвесить все «за» и «против».

В качестве попытки найти объектный критерий для выбора можно со­слаться на результаты исследований Gartner Group, которые позволяют свя­зать экономический эффект от внедрения ERP-систем (в данном случае SAP R/3) с масштабом предприятия, на котором это внедрение проводится.

На рис. 16.1 приведена диаграмма, иллюстрирующая эту зависимость на основании статистических данных по западным промышленным предприятиям.

На основании этих данных можно заключить, что для автоматизации предприятий с объемом производства менее 10 млн. долларов в год внедрение ERP-системы не даст существенного экономического эффекта. На таких пред­приятиях для автоматизации организационного уровня производства в первую очередь необходимо внедрять MES-систему (то есть выбрать более «легкое» в финансовом отношении решение).

Для предприятий с объемом производства от 10 до 100 млн. долларов в год эффективность внедрения ERP - системы составляет 10-30%.

Решение о том, с чего начинать (ERP или MES) должно приниматься индивидуально, однако учитывая средний размер предприятия, большую стоимость внедрения ERP - системы и больший экономический эффект от автоматизации цехов и участков посредством MES, предпочтительно начать с MES, по­сле чего внедрять ERP.

Для предприятий с объемом производства более 100 млн. долларов в год целесообразно начинать автоматизацию организационного уровня производст­ва с ERP - системы, после чего в производственных подразделениях внедрять MES.

Интегрированную автоматизированную систему управления промыш­ленным предприятием можно представить в виде трех взаимосвязанных уров­ней управления (рис.16.2)

При этом каждый уровень выполняет свою основную управленческую функцию:

Верхний уровень управления предприятием (административно-хозяйственный) решает стратегические задачи, а соответствующая ERP-система обеспечивает управление ресурсами в масштабе предприятия в целом, включая часть функций поддержки производства (долгосрочное планирование и стратегическое управление в масштабе: годовое, квар­тальное, месячное);

Средний уровень управления (производственный) решает задачи опера­тивного управления процессом производства, а соответствующая автоматизи­рованная система обеспечивает эффективное использование ресурсов (сырья, энергоносителей, производственных средств, персонала), а также оптимальное исполнение плановых заданий (сменное, суточное, декадное, месячное) на уровне участка, цеха, предприятия;

Низшие уровни технологического управления решают классические зада­чи управления технологическими процессами.

Каждый контур (ERP, MES, АСУТП) управления характеризуется своим уровнем интенсивности циркулирующей в нем информации, своим масштабом времени и своим набором функций:

Контур управления уровня АСУТП (технологический) является самым ин­тенсивным по объему информации и самым жестким по времени реакции, которое может составлять секунды и даже миллисекунды. В верхнем уровне слоя АСУТП происходит накопление и обработка большого числа техноло­гических параметров и создается информационная база исходных данных для MES-уровняю.

Контур управления уровня MES (оперативно-производственный) опирается на отфильтрованную и обработанную информацию, поступающую как от АСУТП, так и от других служб производства (снабжения, технической под­держки, технологических, планово-производственных и т.д.). Интенсивность информационных потоков здесь существенно ниже и связана с задачами оп­тимизации заданных производственных показателей (качество продукции, производительность, энергосбережение, себестоимость и т.д.). Типовые вре­мена циклов управления составляют минуты, часы, смены, сутки. Оператив­ное управление производством в этом контуре управления осуществляется специалистами, которые более детально, чем высший менеджмент, владеют производственной ситуацией (руководители производственных цехов, уча­стков, главные технологи, энергетики, механики и др.). В связи с этим долж­но повышаться качество и эффективность принимаемых решений в пределах делегированных сверху полномочий.

Контур управления уровня ERP (стратегический) освобождается в этом слу­чае от решения оперативных задач производства и обеспечивает поддержку бизнес-процессов предприятия в целом. Поток информации от производст­венного блока становится минимальным и включает в себя агрегированную управляющую и отчетную информацию по стандартам ERP с типовыми временами контроля (декада, месяц, квартал), а также "алармовые" сигналы, требующие немедленного вмешательства высшего менеджмента предпри­ятия.

Очевидно, что при комплексной автоматизации практически любого предприятия есть потребности в покрытии того или иного набора MES-функций средствами автоматизации. Какими продуктами это реализуется - во­прос другой, здесь возможны разные варианты. В некоторых случаях могут применяться интегрированные MES-системы, иногда эти функции могут быть реализованы в рамках той или иной функциональности ERP, возможно исполь­зование автономных продуктов, реализующих ту или иную MES-функцию. Возможно также и сочетание этих вариантов. Конкретный набор MES-продуктов для данного предприятия, с учетом его специфики и возможностей, обычно предлагают фирмы по MES-консалтингу и системные интеграторы. Один из вариантов реализации MES-проекта на производстве представлен на рис. 16.3.

Примеры MES-систем

Рассмотрим краткие характеристики наиболее распространенных MES-систем: PI System, ИУС «Орбита», Plan2 Business Solution, Simatic PCS7, Т-Factory-6.

PI System (Plant Information System) фирмы OSI Software, США - уни­версальная информационная система сбора, хранения и представления в еди­ном формате данных от различных ПЛК, DSC, SCADA-систем, устройств руч­ного ввода и пр. PI System поддерживает клиент - серверную архитектуру. Кли­ентское ПО базируется на ОС Win 9x/NT/2000/XP. Основными компонентами системы являются PI Server - БДРВ с подсистемой обработки данных, PI Sys­tem имеет свыше 250 интерфейсов для связи с ПЛК, DSC, SCADА-системами. В состав ПО клиентских приложений PI System входят:

PI DateLink - выводит данные из архива PI System в электронные таблицы MS Excel.

PI Process Book - построение мнемосхем с параметрами процесса, графиков, диаграмм.

- PI Batch View - просмотр и анализ периодических процессов.

PI АСЕ - анализ производительности и эффективности процесса в реальном времени.

- PI ACI - создание интерактивных мнемосхем для просмотра любым Web-браузером.

- Sigma Fine - анализ работы измерительных устройств.

ИУС «Орбита». Информационно-управляющая система «Орбита» разра­ботана компанией «ПЛК Системы», относится к классу MES - систем и предна­значена для непрерывных и непрерывно-дискретных производств преимущест­венно в горнодобывающей, металлургической, химической, нефтегазовой от­раслях промышленности, а также в теплоэнергетике. В системе использованы программные продукты корпорации Wonderware (InTouch, Active Factory, SuiteVoyager, InSQL, MS SQL, MS Excel) и пакет Avantis.

Система включает разнообразные базы данных знаний - регламентов вы­полнения и учета производственных операций, имеет модульную структуру, базируется на концепции рациональной автоматизации для конкретного пред­приятия с достигнутым уровнем автоматизации.

Система «Орбита» состоит из следующих функциональных модулей:

- «ЖДЖ» - информационно-диспетчерская система железнодорожного цеха.

Характер информации: сведения о незавершенном производстве на путях и о потоках сырья и продукции.

- «Хим. анализы» - информационная подсистема химической лаборатории.

Характер информации: сведения о химических и физических параметрах материалов.

- «ТЭП» - контроль технико-экономических показателей. Характер инфор­мации: текущие и плановые значения технологических и технико-экономических показателей.

- «Балансы» - ведение балансов для анализа производства. Характер инфор­мации: динамика дебалансов и факторов, их образующих.

- «НЗП» - мониторинг незавершенного производства. Характер информа­ции: динамика изменения незавершенного производства и факторов, ее об­разующих.

- «Резервуары» - мониторинг резервуарного парка. Характер информации: сведения о незавершенном производстве на складах, их входах и выходах.

- «Метрология» - планирование, учет, ремонт, поверка средств измерения и контроля. Характер информации: сведения о состоянии действующих при­борах и ходе ремонтных и поверочных работ.

Основой обработки и хранения информации данных в РВ являются сер­веры - MS SQL Server и IndustrialSQL Server.

Система Plan2Business Solution компании О Technologies. Plan2Business Solution обеспечивает представление технологической информации любому пользователю системы в реальном времени. В семейство Plan2Business Solution входят следующие программные средства:

Plan2Business Server;

Компонент Plan2Business Server, является основой Plan2Business Solution, взаимодействующей со SCADA системами Citect и FIX, базами данных реаль­ного времени Oracle и MS SQL Server, используемыми для хранения конфигу­рационных и технологических данных. Для интеграции с MS Word, Excel, Ac­cess, Internet Explorer и др. Используются открытые технологии типа MS ActiveX. В состав Plan2Business Server входят ряд клиентских приложений, на­страиваемых в соответствии в требованиями пользователя, в том числе тренды, алармы, данные для встраивания в электронные таблицы.

Кроме того, Plan2Business Server имеет встроенные средства резервиро­вания с возможностью переключения с основного на резервный и средства за­щиты информации.

Конфигурирование и администрирование Plan2Business Server осуществ­ляется с помощью Plan2Business Server Manager.

Plan2NET на основе Plan2Business Server и используя современные WEB-технологии, способен доставить информацию пользователю в любой точке сис­темы. Plan2NET имеет встроенный анализатор тревог для наблюдения за собы­тиями на производстве и их диагностики. Данные выводятся в виде трендов, номограмм, диаграмм или таблиц.

Plan2Pocket предназначен для доступа к технологической и оперативной информации с помощью средств беспроводной связи, основанной на современ­ных стандартных технологиях.

Simatic PCS7 - интегрированная система управления процессом произ­водства фирмы Siemens, Германия.

Отличительные особенности системы:

Открытая модульная система (используются интерфейсы DDE, ОРС, ODBC, SQL);

Гибкость и масштабируемость системы;

Возможность резервирования модулей системы, в том числе ПЛК, сетей, устройств ввода- вывода и системы HMI;

Соответствие международным стандартам, таким как Ethernet, TCP/IP, ОРС для обмена данными с корпоративным уровнем управления;

Наличие модульного программного пакета BATCH flexible для автомати­зации дискретных рецептурных процессов, сопрягаемого с SAP R/3.

Система обеспечивает горизонтальную и вертикальную интеграцию предприятия - от уровня датчиков до уровня управления предприятием.

Коммуникация в системе Simatic PCS7 основана на стандартах Simatic Net, Industrial Ethernet, Fast Ethernet и PROFIBUS. В качестве ОС используется Win NT. Для настройки системы PCS7 применяется Simatic-менеджер от STEP 7, а в качестве языка программирования по стандарту IEC 61131-3 используется язык SFC. Для разработки интерфейса операторской станции используется гра­фический редактор WinCC.

Система PCS7 оперирует преимущественно с контроллерами Simatic S7-400 с интерфейсом шины PROFIBUS-DP. ПЛК подсоединяется к системной шине через Industrial Ethernet. Для высокоскоростной передачи данных в систе­мах с требованиями безопасности применяется Fast Ethernet (100 Мбит/с) с ре­зервированной кольцевой структурой и физической средой - оптоволокно.

Программное обеспечение Simatic PCS7 включает интерфейс @aGlance и сервер @[email protected], обеспечивающий доступ к данным технологического процесса для различных приложений в любое время, в том числе через сети Internet/Intranet.

InfoPlus.21 - информационная система управления в режиме РВ интегри­рована с системой Simatic PCS7.

Система «T-Factory-б» компании AdAstra Research Group (Россия).

Программный продукт T-Factory-б предназначен для автоматизации биз­нес-процессов. T-Factory-б относится к классу MES-систем и призван решать задачи учета производственных затрат, сырья и энергии, учета простоев обору­дования, расчета себестоимости продукции и др. задачи. Достоинством систе­мы является ее интеграция со SCADA-системой Trace Mode б, при разработке которых используется технология автопостроения.

Разработка проекта АСУ ТП со SCADA-системой Trace Mode 6 служит ее основой ее интеграции с MES-системой T-Factory-б. Модули T-Factory-б обес­печивают управление производственными заданиями (функции MES-систем) и управление человеческими ресурсами (HRM). Модуль ЕАМ обеспечивает учет и техническое обслуживание, получение и анализ информации об отказах обо­рудования, учет затрат энергоресурсов. Модуль HRM контролирует кадровый состав предприятия, организационные структуры предприятия, цеха, участка, позволяет грамотно планировать трудовые ресурсы для выполнения конкрет­ных задач.

Наиболее ответственным в системе является MES-модуль, в котором ин­тегрируется вся информация от АСУ ТП и модулей ЕАМ и HRM. Модуль MES позволяет рассчитать сроки выполнения заказов и корректировать их в режиме реального времени, рассчитать и корректировать себестоимость продукции, рассчитать необходимые для выполнения задания ресурсы (материальные, фи­нансовые, кадровые), а также обеспечивает передачу информации в ERP-систему предприятия.

Для хранения данных о ходе технологических и производственных про­цессов используется единая СУБД реального времени SIAD6. Предусмотрено «горячее» резервирование серверов БД защита от несанкционированного дос­тупа. Данные о технологическом процессе поступают в T-Factory-6 из МРВ Trace Mode 6, а с верхнего бизнес-уровня - от операторских станций, Web-серверов, по GSM-каналам.

T-Factory-6 содержит бесплатную инструментальную среду для разработ­ки и проверки полнофункционального проекта (до покупки лицензии с ограни­чением времени непрерывной работы).

В статье рассматривается огромный проект, в котором участвовало несколько компаний: создание и внедрение системы MES на заводе «Воронежсинтезкаучук», производящем синтетические каучуки и термоэластопласты (ТЭП). Показано, как MES-система позволяет улучшить бизнес-процессы на предприятии.

Журнал «ИСУП», г. Москва

MES-системы

Статьи о системах MES в нашем журнале появились несколько лет назад, но большого развития эта тема тогда не получила. В какой-то момент даже показалось, что сами системы MES плохо приживаются в нашей промышленности. Однако им тогда просто не пришло время. Сегодня мы расскажем об одном внедрении, благодаря которому удалось значительно повысить эффективность производственных процессов на одном из крупнейших российских предприятий по производству синтетического каучука.

Начнем с главного: что такое MES? Это своеобразное промежуточное звено между системами планирования производства (ERP) и системами управления самим технологическим процессом (АСУ ТП).

Технологический процесс на каждом предприятии уникален, и тем не менее сходство есть: на всех заводах давно уже правят бал АСУ ТП разнообразного типа, начиная с PLC и заканчивая мощными РСУ. В то же время, на любом предприятии существует уровень, в фокусе внимания которого находится заказчик – потребитель вырабатываемой продукции. Здесь планируются производство и логистика, прогнозируются продажи и контролируются затраты. Уже 15–20 лет назад для помощи в работе на этом уровне тоже использовались автоматизированные системы ERP (от англ. Enterprise Resource Planning – «планирование ресурсов предприятия»).

Между уровнями технологического процесса и планирования производства всегда циркулировало огромное количество бумажных отчетов, которые писали обходчики, операторы, инженеры, диспетчеры и другие сотрудники. Велись бумажные журналы, составлялись отчеты в Excel-таблицах, распечатывались режимные листы из АСУ ТП, все эти отчеты бесконечно дублировались и кочевали из кабинета в кабинет. Отдельной сложной работой, отнимающей много времени, являлось сведение материальных балансов. Однако постепенно, позже, чем на других уровнях, и здесь начала происходить автоматизация «бумажного» ручного труда. Стали появляться программы-приложения, написанные для анализа и обработки данных, связанных с технологическими процессами. Они получили общее название MES.

Сегодня MES (от англ. Manufacturing Execution System – «система управления производственными процессами») уже не отдельные приложения, а комплексная система, объединяющая производство (рис. 1). С помощью MES пользователи могут получать информацию обо всех производственных операциях, которые ведутся на предприятии. Происходит это в режиме времени, максимально приближенном к реальному. А это позволяет сделать производство прозрачным и принимать управленческие решения с большой скоростью и мобильностью.



Рис. 1. Модули MES

Особенно востребованы системы MES на предприятиях с многоуровневыми технологическими процессами, которые зависят от множества факторов: температурного режима, давления, энергопотребления и др.

Именно таким и является воронежское предприятие группы ­СИБУР «Воронежсинтезкаучук». Поэтому в 2012 го­ду в целях повышения эффективности производственных процессов на производственной площадке в Воронеже стартовал масштабный проект по внедрению системы MES.

Чтобы представить себе масштаб производства на заводе в Воронеже, сделаем небольшое отступление. Как известно, в нефти содержится попутный газ (ПНГ), который отделяется от нее во время переработки. На протяжении многих лет этот газ просто сжигали, однако есть у ПНГ и другое, куда более эффективное, применение: производство полимеров, окружающих нас изо дня в день. Всё – от пластиковых окон до медицинских инструментов, от бутылок с минералкой до автомобильных запчастей – является продуктом многоступенчатой переработки попутного нефтяного газа.

Ключевым сырьем для производства синтетического каучука является бутадиен, который, в свою очередь, также производится из ПНГ. На воронежскую площадку СИБУРа бутадиен поступает из Тольятти, а также из Тобольска, с предприятий «Тольяттикаучук» и «Тобольск-Нефтехим» соответственно.

Уже в Воронеже с помощью многочисленных технологических операций бутадиен подвергают обработке, получая на выходе не только синтетический каучук, но и термоэластопласты (ТЭП) – материалы, сочетающие в себе достоинства пластмассы и резины. Основным сегментом применения первого является автомобильный сектор, вторых – строительство.

Внедренная на воронежской промышленной площадке СИБУРа система MES позволяет отслеживать весь технологический процесс, начиная от стадии приемки сырья до отгрузки готовой продукции на склад.

Программная платформа GE Proficy

Для построения MES требовалась программная платформа. Выбор пал на продукт компании Gene­ral Electric.

GE, огромная корпорация, которую когда-то, 138 лет назад, основал сам Томас Эдиссон, всю свою историю была известна как производитель электрооборудования: компрессоров, турбин, подстанций, холодильников, медицинских установок и огромного числа другого «железа». Однако в последние годы у компании изменились амбиции: теперь она самым активным образом занимается разработкой программного обеспечения: корпорация твердо намерена войти в топ‑10 ведущих мировых разработчиков софтверных решений.

Одним из этих решений является программный продукт Proficy, который с успехом используется для построения MES-систем во всем мире.

Учитывая специфику внедрения на «Воронежсинтезкаучке», GE предстояло определить, что именно нужно заказчику для построения шаблонного решения. Используя собственную методологию, с помощью программы Enterprise Architect специалисты компании GE перевели требования заказчика в цифровой вид и создали сценарии их использования. Эта методология позволила избежать любых разночтений между специалистами со стороны ­СИБУРа и разработчиками программного продукта. Так был создан шаблон MES-системы, в котором были учтены все пожелания заказчика.

Предприятие «Воронежсинтезкаучук»

Кратко познакомим читателя с первым предприятием группы, на котором предстояло внедрить MES-систему. «Воронежсинтезкаучук» производит синтетические каучуки с 1932 года. До 1992 года в качестве сырья для производства каучука использовался этиловый спирт, но позже завод перешел на технологию, в основе которой лежит переработка поступающего на предприятие бутадиена. Бесперебойные поставки сырья с других предприятий группы СИБУР позволяют воронежской площадке выстраивать долгосрочные отношения с клиентами. Важность этого фактора сложно переоценить: немалая доля предприятий по производству синтетических каучуков в стране была закрыта именно по причине нехватки сырья.

Как уже упоминалось выше, на заводе производят не только синтетический каучук (использующийся главным образом для изготовления шин), но и термоэластопласты – ТЭП, вещества, совмещающие в себе свойства пластмассы и резины. Поэтому клиентский портфель завода включает в себя как производителей автомобильных шин (Michelin, Bridgestone, Pirelli, Yokohama и др.), так и компании, поставляющие продукцию для строительной отрасли.

На отдельном производстве «ТЭП‑50» изготавливается сырье для мягкой кровли, герметиков, клеев. Также продукция установки «ТЭП‑50» нашла широкое применение в автодорожном строительстве. Полимерно-битумные вяжущие, получаемые из термоэластопластов, позволяют существенно повысить износостойкость верхнего слоя дорожного покрытия и в целом продлить срок эксплуатации дорожного фонда. Отметим, что воронежская площадка СИБУРа является единственным в России производителем ТЭП. Более 80 % термоэластопластов, потребляемых внутри страны, производится в Воронеже.

«ИндаСофт» – интеграция системы

В 2012 году для внедрения MES-системы на воронежском заводе пригласили российскую компанию-интегратора «ИндаСофт». Во-первых, потому что основное направление ее деятельности – внедрение MES «под ключ». А во‑вторых, потому что специалистами «ИндаСофт» для этой задачи разработаны программные продукты, соответствующие российским реалиям и законодательству, включенные в Реестр российского ПО:
- система сведения материального баланса (I-DRMS);
- система учета энергоресурсов (I-EMS);
- система диспетчерского управления (I-DS/P).

Компанией «ИндаСофт» было выполнено свыше 100 проектов на разных предприятиях, однако со спецификой каучукового производства довелось столкнуться впервые. Дело в том, что в этом производстве очень сложный учет: в синтетические каучуки входит огромное число компонентов, а кроме того, в производстве участвуют 19 энергоресурсов.



Рис. 2. Интеграция MES с SAP

Вот почему заказчик поставил перед интегратором задачу: не просто внедрить систему MES, но и совместить ее с системой SAP, автоматизирующей работу бухгалтеров, финансовой, кадровой и других служб. Эта система внедрялась на заводе «Воронежсинтезкаучук» параллельно. С помощью интеграции MES и SAP предстояло решать задачи, связанные со сравнением плана и факта производства, передачей технических заказов, результатами испытаний, проблемой остатков, согласованием выработки потребления материалов и ресурсов.

Для задач по интеграции MES с другими системами, внедренными на заводе (SAP и LIMS), был выбраны программные продукты GE Digital. Однако с самого начала была осуществлена интеграция MES с АСУ ТП – реализован модуль диспетчеризации.



Рис. 3. Мнемосхема в диспетчерской, отражающая технологические процессы, протекающие на предприятии

Уже в 2014 году диспетчер предприятия видел все производство на мониторе (рис. 3): какие линии функционируют и какие стоят, насколько эффективно идет работа. Раньше диспетчер узнавал эту информацию по телефону: ему звонили операторы и другие сотрудники, обслуживающие АСУ ТП, и отчитывались о том, что происходит. Таким образом, информация диспетчера зависела от сотрудников, приходилось всю ее фиксировать в бумажных журналах, а принятие решений отнимало много времени. Теперь информация поступает в режиме, максимально приближенном к реальному времени, непосредственно с датчиков АСУ ТП. И звонки теперь идут в обратном режиме: диспетчер звонит оператору и указывает, что у него недостаточно эффективно работает линия или наблюдается какая-то неисправность. Решения принимаются очень быстро. Кроме того, полностью отпала необходимость заполнять бумажные журналы, что освобождает от ненужного труда и исключает человеческую ошибку, ведь вся информация о технологическом процессе поступает в MES автоматически.

Здесь следует указать отдельно, что связь между АСУ ТП и системой MES односторонняя. В MES-систему поступает информация о протекании технологических процессов из разных АСУ ТП завода, но обратно через сеть никакая информация и никакие управляющие сигналы в АСУ ТП поступить не могут. Обратная связь осуществляется только через людей: например, по тому же телефону. Это важно в первую очередь из соображений безопасности.


Рис. 4. В операторной установки «ТЭП‑50»: на стене – видеоинформация из цеха; на мониторе оператора – мнемосхема рабочего процесса

Однако самая «горячая пора» в работе над внедрением MES наступила во второй половине 2014 го­да. К лету были написаны все необходимые приложения, подготовлено все необходимое оборудование. До нового года оставалось шесть месяцев. За эти полгода необходимо было внедрить систему, потому что с 1 января наступает новый финансовый год и MES должна была вступить в работу параллельно с SAP. Это рекордное по скорости внедрение было выполнено в срок.

Как это работает

Проект по внедрению MES на воронежской площадке СИБУРа действительно уникален, поскольку именно здесь впервые в России удалось интегрировать две системы – MES и SAP. Благодаря интеграции появилась возможность максимально оперативно сводить материальный баланс завода. Данные об остатках готовой продукции на складе обновляются в MES и транслируются в SAP ежедневно.

Поясним на наглядном примере: как только кладовщику приходит часть партии каучука, он фиксирует это событие в компьютере. Информация сразу вносится в систему и отправляется в SAP, где ее тоже видят.

Также эта партия отправляется в лабораторию на контроль качества. У синтетических каучуков может быть многообразный состав. Разным клиентам нужен разный каучук. Качество партии фиксируется сотрудниками в лабораторной системе LIMS, оттуда эта информация попадает в MES, которая сортирует готовую продукцию под конкретного заказчика. Ежемесячно происходит большое количество сортировок, поэтому ясно, что автоматизация значительно облегчила, ускорила и оптимизировала рабочий процесс. Кроме того, теперь можно оперативно отгружать продукцию клиенту, не храня ее на складе.

На основе всех полученных данных раз в сутки проводится сведение материального баланса, а также сведение экономического баланса – исключительная ситуация для нашей промышленности, где сведение балансов бывает раз в месяц и требует очень больших трудозатрат. Сегодня сведение балансов на «Воронежсинтезкаучуке» стало очень удобной функцией, которая необходима компании.

Такое же сведение баланса происходит по каждому энергоресурсу.

И все эти данные (подчеркнем – достоверные данные!) в режиме реального времени могут видеть все сотрудники предприятия разного уровня: инженеры, диспетчеры, начальники подразделений, генеральный директор и др.

Отметим ключевые бизнес-результаты внедрения MES и интеграции SAP/MES:
- получение в SAP (через MES) первичных данных с приборов учета с аудируемым изменением;
- прозрачный алгоритм формирования агрегированных и согласованных показателей работы завода по измеренным данным;
- доступ к первичным измерениям АСУ ТП на всех уровнях управления производством, контроль качества данных АСУ ТП;
- единый достоверный набор данных для формирования оперативной отчетности, все службы предприятия получают данные из единого источника;
- единый источник данных по качеству, автоматическая передача данных в MES и SAP ERP для паспортизации;
- оперативный контроль параметров безопасного и эффективного ведения технологических режимов из любого места.

В данной статье мы хотим рассказать о том, какие возможности предоставляют системы оперативного управления производством Manufacturing Execution Systems (MES), и о передовых российских разработках систем этого класса в частности.

Систем много, а я один: ERP или MES?

Не секрет, что число автоматизированных систем на российском рынке постоянно увеличивается, поэтому разобраться в них и определиться с выбором российскому предприятию очень непросто.

Рекламные усилия пропагандистов ERP прочно утвердили образ этого класса систем в сознании IT-менеджеров и руководителей предприятий как панацею от всех бед. Проще говоря, перекос в область ERP-зации на отечественном рынке софта налицо. Между тем все чаще и чаще мы слышим вздохи и сожаления, что «внедрение системы затянулось на годы», «результат от внедрения пока не виден», «до автоматизации производства так и не дошли», «попытка внедрения системы на производстве не устранила существующих проблем» и т.д. и т.п.

Почему же не оправдались надежды? Причин много, но самая главная из них заключается в том, что палочки-выручалочки для решения всех проблем финансово-хозяйственной деятельности компаний для всех отраслей промышленности, к сожалению, не существует в природе. Каждый класс систем, каждая система решает те задачи, для которых они предназначены.

Не вдаваясь в подробности, попробуем выделить специфический круг проблем, которые могут решаться с помощью MES-систем, но находятся вне компетенции традиционных ERP.

Итак, рассмотрим производственное предприятие, — основной сферой деятельности которого является создание и выпуск продукции. Это источник добавленной стоимости для предприятия, и от эффективности организации производственных процессов зависит в конечном счете себестоимость продукции, а значит, ее рыночная конкурентоспособность. Все остальные процессы на производственном предприятии — закупки, маркетинг, финансово-учетные, управление персоналом и складской деятельностью и т.д. — существуют по большому счету только потому, что есть для чего закупать комплектующие, что продавать, что учитывать, что складировать...

ERP-системы широкого профиля — какая-то хуже, какая-то лучше — в целом справляются с задачами поддержки этих вспомогательных процессов. Отдельные продвинутые системы данного класса включают также и модули управления производством. Само словосочетание «управление производством» слишком общее и весьма привлекательное, поэтому многие покупаются на это, но потом часто выясняется, что функциональность включает лишь внешнюю оболочку процессов управления производством, не затрагивая его ядра, то есть управления производственной деятельностью как таковой.

Где же заканчивается оболочка и начинается ядро, обслуживать которое и призваны MES-системы? В чем же их функциональность и почему она так привлекает сегодня руководителей производств? Попробуем разобраться.

Не затрагивая вопросов автоматизации на аппаратном уровне, то есть на уровне так называемых SCADA-систем (управление счетчиками, датчиками и прочими приборами и оборудованием), MES концентрируются на поддержке плановой и организационной составляющих самого производственного процесса. Ключевыми процессами для них являются следующие (более детально о функциях MES вы можете почитать, к примеру, на www.mesa.ru):

1. На базе внешней потребности в производстве продукции (основанной на заказах клиентов, планах продаж и т.д.), а также предыдущих производственных программ с учетом всевозможных нюансов и специфики производства на конкретном предприятии, о которых речь пойдет ниже, автоматически формируется детальное оптимизированное производственное расписание работ, операций для станков, оборудования, персонала. Разумеется, с автоформированием всей необходимой для осуществления работ документацией: производственных программ, нарядов, лимитно-заборных карт, таблиц и диаграмм загрузки оборудования и пр.

2. В ходе непосредственной реализации производственных программ осуществляется полная диспетчеризация всех операций и их результатов (как положительных, так и отрицательных — брака, задержек и др.), потока изготавливаемых деталей по операциям, заказам, партиям, сериям, работоспособности оборудования и др.

3. При выявлении отклонений от запланированных программ в силу объективно сложившейся ситуации на производстве, при появлении новой внешней потребности (заказов и др.) производится оперативное перепланирование с коррекцией всех составляющих.

Отметим, что сегодня в Западной Европе в MES вкладываются немалые деньги: по данным аналитической компании Frost&Sullivan, мировой рынок MES достиг 1,2 млрд. долл. в 2003 году, а к 2010 году вырастет до 2,5 млрд. Западный предприниматель хорошо знает, где именно создается прибавочная стоимость и образуются основные издержки на его предприятии.

В чем же здесь отличие от «управления производством», реализованного в некоторых ERP-системах? А отличия, как всегда, кроются в деталях, принципиальных для правильной работы производства.

Во-первых, не все ERP-системы способны осуществлять планирование производства: многие производители, громко заявляя об управлении, ограничиваются исключительно учетными функциями. Далее системы, позиционируемые как удовлетворяющие стандартам MRP, MRPII (управление ресурсами) и включающие функции планирования, делают это в слишком общем виде, без учета всех необходимых особенностей производства. Так, планирование часто осуществляется на уровне цехов и участков, как правило, в виде объемных планов, поскольку особенности заложенного способа планирования не позволяют дойти до уровня операций на конкретном оборудовании и конкретных рабочих местах. А ведь каждая единица оборудования может иметь собственный график работы, свои особенности по ограничениям загрузки, мощности и т.д., индивидуальные планы ремонтных работ и непредвиденные поломки. Такое планирование часто приводит к недопустимым на производстве ошибкам: бывает, что сформированный план невыполним на нижнем уровне из-за перекрытия, наложения производственных операций по времени для некоторых станков, а значит, он будет неизбежно сорван.

В ряду наиболее важных особенностей планирования для многих предприятий следует выделить необходимость учета взаимозаменяемых станков, способных выполнять одинаковые операции. Отсутствие учета этой специфики в ERP-системах не позволяет осуществить распараллеливание критичных операций, что в итоге приводит к неоптимальному графику производства. Кроме того, ERP-системы не производят должной диспетчеризации производственных процессов, довольствуясь лишь фиксацией его выходных результатов.

YSB.Enterprise.Mes: пример расчета производственного расписания

Стоит ли говорить, что MES-системы позволяют корректировать либо полностью пересчитывать производственное расписание и все необходимые для оперативной работы данные в течение рабочей смены ровно столько раз, сколько требуется. В то же время перепланирование в ERP оказывается целесообразным не чаще одного раза в сутки. И это вполне объяснимо. Дело в том, что формирование подробных производственных расписаний с учетом всей необходимой специфики и на требуемом уровне детальности — сложнейшая вычислительная задача как по количеству вычислений (разумеется, если предприятие производит не три вида продукции на трех станках), так и по сложности вычислительных алгоритмов. Решить ее «на коленке», как и «на бумажке» — слишком трудоемко (а оптимально решить подчас просто невозможно). А для разработчиков систем важно осуществить этот расчет за обозримое для производства время, ведь если программа зависнет на часы, то зачем она нужна? Недаром разработкой MES-систем, о которых речь пойдет ниже, занимаются выходцы из академической науки, полжизни посвятившие таким разделам математики, как исследование операций и теория расписаний.

В настоящее время на рынке существует много различных программных продуктов, в описаниях которых декларируется, что они умеют планировать производство, составлять производственные расписания. И в связи с этим хочется обратить внимание читателей еще на один принципиальный момент. При анализе программ весьма желательно поинтересоваться, в соответствии с какими критериями составлено производственное расписание, ведь без этого вы не сможете судить, насколько оно вас удовлетворяет, подходит ли такой способ планирования вашему конкретному предприятию. Когда скрываются критерии планирования (а такое, увы, нередко встречается), это вызывает определенную настороженность. Если поставщики боятся прямых тестовых сравнений, то стоит задуматься, реализованы ли эти критерии вообще.

Российские передовики MES-производства

Ниже речь пойдет о трех прогрессивных отечественных разработках, имеющих полное право носить гордое имя MES, и о некоторых внутривидовых отличиях. Это продукты многолетней работы трех научных центров разработки систем данного класса — из Москвы (система ФОБОС, www.mesa.ru), Орла (система YSB.Enterprise.Mes, www.orel.ru/jsb) и Уфы (система PolyPlan).

Несмотря на то что все три системы предназначены для оперативного управления производством дискретного типа — преимущественно позаказного, мелкосерийного и единичного (заметим, что для массового и серийного производства планирование проще, а потому возможностей ERP зачастую бывает достаточно), они реализуют вышеописанные возможности, хотя назначение систем несколько различается.

Так, ФОБОС традиционно используется на крупных и средних машиностроительных предприятиях. YSB.Enterprise.Mes возникла из деревообрабатывающей промышленности и ввиду особенностей, изложенных ниже, ориентируется на сектор средних и мелких предприятий. Система PolyPlan имеет меньший набор функций MES, но позиционируется как система оперативно-календарного планирования для автоматизированных и гибких производств в машиностроении.

В целом эти системы функционально очень близки, а их разработчики — опытные специалисты в области управления производством, так что, несмотря на различия в позиционировании, системы могут быть адаптированы под разнообразные отраслевые особенности дискретного или сводимого к дискретному производству.

Различия же систем в следующем. ФОБОС осуществляет внутрицеховое планирование и управление, традиционно принимая и отдавая входные и выходные данные ERP-системе, которая обычно используется в машиностроении на крупных заводах. Как правило, это тяжелые ERP-продукты, такие как BAAN и SAP, взаимодействие с которыми осуществляется посредством интеграции, хотя сейчас ведутся работы и по интеграции с «1С:Предприятием». В комплексе с этими системами ФОБОС способен решать большинство задач крупного предприятия.

Система YSB.Enterprise, напротив, функционировала на предприятиях среднего размера и постепенно расширила свои функциональные возможности «вправо и влево» от MES, включив в свой состав продажи с формированием портфеля заказов, возможности по управлению складским дефицитом (не только производственного происхождения) и даже бухгалтерию с расчетом заработной платы многообразными способами. В настоящее время идут разработки по созданию модуля управления закупками. Конечно, до уровня полноценной ERP функционал системы пока не дорос, тем не менее имеющихся возможностей может быть достаточно для многих российских предприятий. Такая политика позиционирования разработчиками системы выбрана из-за того, что предприятия среднего класса и ниже, уже переросшие «1С», пока обделены полноценной производственной автоматизацией — цены на западный и российский софт, включающий хоть сколько-нибудь серьезное производство, не говоря уже об оптимальном его планировании, пока превышают уровень доступности для большинства компаний, вынужденных значительную часть средств инвестировать в свое развитие.

Расширенный спектр функций YSB.Enterprise по сравнению с традиционными MES предоставляет возможности учета дополнительных данных при управлении производством. Так, включение склада позволяет организовать определение приоритетов при запуске заказов в производство, к примеру при недостаточной обеспеченности покупными материалами или отсутствии предоплаты за заказ.

Российская MES-система PolyPlan тоже ориентирована на машиностроительные производства, но, кроме традиционного класса обслуживающих устройств типа рабочих центров (РЦ), оперативно-календарное планирование PolyPlan предполагает формирование расписаний для транспортных систем, осуществляющих перевозку партий деталей между РЦ, складских устройств приема-выдачи партий деталей и бригад наладчиков. Ввиду отсутствия явного контура оперативной диспетчеризации PolyPlan стоит несколько дешевле указанных выше систем.

Система MES PolyPlan легко адаптируется для управления и неавтоматизированным производством. Ориентированная на машиностроение, она может быть также использована и на этапе маркетинга — программа позволяет на основе укрупненных данных определить возможность выполнения портфеля заказов по существующим фондам времени технологического оборудования. При оперативном планировании производства возможно получение нескольких допустимых решений расписания. Чем больше глубина поиска, которая задается пользователем, тем больше время счета, но тем выше и точность построения расписания. Точность «однопроходной» оптимизации, часто используемой в таких задачах, отличается от оптимального решения не более чем на 5-7%, но на порядки экономит время счета.

Рассказывает Евгений Борисович Фролов, главный конструктор системы ФОБОС, доктор технических наук, профессор, заведующий лабораторией исполнительных производственных систем Института конструкторско-технологической информатики РАН (ИКТИ РАН): «По существу, если составлять с помощью компьютеров оптимальные производственные расписания и иметь возможность в случае необходимости оперативно осуществлять их коррекцию, то можно гарантированно повысить скорость исполнения заказов. Опыт показывает, что часто можно выполнить весь месячный план всего за 20 дней. Оптимизация материальных потоков позволяет на 10 дней, то есть на 30%, сократить время выпуска изделий! А увеличение скорости прохождения производственных заказов в 1,5 раза позволяет также снизить и объем НЗП приблизительно на 25%».

В связи с такими впечатляющими цифрами надо отметить, что экономическая эффективность внедрения ERP-систем во многих случаях туманна и расплывчата и по этому поводу не смолкают споры специалистов. Напротив, для MES такая эффективность рассчитывается довольно точно, а ведь даже 10-процентное ускорение производственной деятельности за счет оптимизации, расшивки узких мест и увеличения пропускной способности вкупе с уменьшением накладных затрат при сокращении сроков — это уже очень существенно!

Сахават Юсифов, главный разработчик YSB.Enterprise.Mes: «Нормальная организация и автоматизация управления производством позволяет перенести акценты с плановых и производственных отделов на отдел продаж и рекламаций при работе под заказ — как это и должно быть в любой клиентоориентированной компании. При этом усиливается роль системы сбора информации о ходе производства и систем слежения за состоянием ресурсов, запасов, дефицитов».

Новые проекты MES в Китае: Поднебесная демонстрирует свои успехи не только в космосе…

Нередко, задумываясь о проблеме повышении фондоотдачи основного технологического оборудования, руководители отечественных производств ориентируются в основном на передовой западный опыт. В России же новое перспективное направление MES проходит только первые этапы своего становления. А что Восток?

В настоящее время спрос на наукоемкие разработки для производства опережает предложение в силу быстрого экономического роста китайских предприятий. И если CAD/CAM-системы уже получили широкое распространение даже на небольших предприятиях Китая и интенсивно используются, то системы внутрицехового планирования и диспетчерского контроля уровня MES практически отсутствуют, хотя потребность в них велика. Дело в том, что использование западных систем, позволяющих решать эти задачи, зачастую тормозится их высокой стоимостью, трудностью адаптации к потребностям китайских предприятий, а иногда и неудобством пользовательского интерфейса.

Как известно, правила формирования и оформления технологических процессов и инженерной документации в России и Китае в основном совпадают, методы организации производства в обеих странах ориентированы на контроль за выполнением работ, указанных в рабочих нарядах. При сходной методике создания маршрутных и операционных технологий можно сравнительно просто (в отличие от западных программных продуктов) осуществлять с помощью китайской версии MES системы ФОБОС внутрицеховое оперативное планирование, диспетчерский контроль и учет межоперационных заделов.

В качестве примера успешных внедрений ФОБОС в КНР можно привести завод по производству гидравлических машин и теплообменного оборудования компании «Шэнжоу» (г.Фушань), завод по производству крупных штампов «Линшихао» (г.Гуанчжоу), завод KONKA (г.Шенжень) и ряд других предприятий.

Как любят говорить китайцы, если коммунизм распространялся в Китае с севера на юг, то капитализм движется с юга на север. Не случайно, что основная часть MES-проектов здесь выполняется на предприятиях провинции Гуандун — наиболее интенсивно развивающейся в мире области, расположенной на юге Китая. Поднебесная явно демонстрирует мировому сообществу, что она добивается существенных успехов не только в космосе…

Свой — чужой

Почему мы решили поговорить об отечественных MES-продуктах?

Во-первых, из-за их адаптивности. С отечественными разработчиками всегда проще договориться о доработках. Центры разработок западных систем находятся не в России. Существенно видоизменять логику системы под специфику конкретного предприятия — весьма трудоемкая задача, и не многие компании-внедренцы на это пойдут, а если и пойдут, то цена вопроса будут сравнимой с и так не маленькой ценой западных систем.

Во-вторых, российские системы значительно дешевле — как по лицензиям на софт, так и по стоимости его внедрения и сопровождения. Дешевле — так как западные компании отчисляют средства создателям систем плюс огромные затраты на маркетинг, а к тому же фирмы-представители часто находятся в Москве, где затраты на их содержание гораздо выше, чем в регионах, да и цены на специалистов по западным системам существенно превышают наши цены. И это при том, что квалификация российских специалистов в целом существенно выше, ведь они разрабатывали эти системы с нуля, знают их как свои пять пальцев, в отличие от пришедших на российский рынок западных систем, которые местные внедренцы часто вынуждены изучать непосредственно в ходе внедрения проектов, так как у многих продуктов отсутствует документация на русском и т.д.

А главное — описанные нами российские MES-системы не уступают своим западным аналогам, а во многом и превосходят их. Конечно, не нужно ориентироваться исключительно на популярный слоган: «Покупайте только российское», но, тем не менее, стоит присмотреться к отечественной продукции — особенно в преддверии вступления России в ВТО…

Юлия Гараева

IT-консультант по выбору систем Корпорации МетаСинтез (г.Москва).

Равиль Загидуллин

Канд. техн. наук, доцент, докторант УГАТУ, каф. автоматизированных технологических систем (г.Уфа).

Сун Кай Цин

Аспирант Гуандонского технического университета, КНР.

MES-СИСТЕМЫ

MES-системы - это системы, которые работают на уровне цеха. Системы такого класса решают задачи синхронизации, координируют, анализируют и оптимизируют выпуск продукции в рамках какого-либо производства. MES-системы могут являться отличным дополнением к системам верхнего уровня - ERP-системам.

Определение MES-системы не дает четкого представления о ее предназначении, возросшие ее функции поглощают функции систем уровня АСУ ТП, систем диспетчеризации и т.д. Необходимо определить, что на сегодняшний день понимается под системами MES.

MES-cистема – это система по осуществлению управления производством, основная задача, которой осуществить связь всех бизнес-процессов компании с ее производственными и технологическими процессами, при этом оперативно предоставляя информацию.

В процессе производства возникают различные факторы, стремящиеся сойти с графика выпуска продукции: поломка и ремонт оборудования, срочный приоритетный заказ, переделка брака, больничные листы рабочих, не поставка в срок комплектующих, отсутствие технологической оснастки, а также многие другие непредвиденные обстоятельства. Обстановка на производстве меняется каждую минуту. Не смотря на это, необходимо всегда знать, как изменится конечный срок выполнения заказа, как наилучшим образом спланировать производство в сложившейся ситуации, для этого необходим новый перерасчет календарного плана. В MES-системе такой перерасчет может выполняться столько раз в день, сколько потребуется.

Одной из задач MES как раз и является коррекция возникающих отклонений за счет оптимального многократного перепланирования по реальному состоянию оборудования и заказов.

Неправильная загрузка станков для обработки различных изделий ведет к постоянному срыву сроков производства, режиму срочной работы на предприятии, переработке сотрудников, нехватке деталей на сборке узлов, перегрузу станков, динамическим проблемам, а также многим другим издержкам производства, мешающим вовремя произвести продукцию.

Задачей MES является оперативно-календарное планирование, с помощью которого загрузка станков будет осуществлена максимально выгодным образом. Все изделия будут выполнены в максимальные сроки, при этом все комплектующие будут гарантированно находиться на складе к моменту сборки изделий.

В момент сборки изделий или запуска той или иной операции не редко выясняется, что некоторые детали или оснастка отсутствует в наличии, зато менее необходимые детали или оснастка находятся в переизбытке. При использовании MES-систем подобная ситуация просто не может возникнуть.

Диспетчеризация производства позволит в режиме реального времени наглядно оценить загрузку станков, сделать основные отчеты, мгновенно реагировать на различные ситуации.

Используя точные текущие данные, MES регулирует, инициирует и протоколирует работу предприятия по мере возникновения событий. Набор функций MES позволяет управлять производственными операциями от момента поступления заказа на производстве до готового продукта. MES предоставляет наиболее важную информацию о производственной деятельности для всей организации и обо всей цепочке поставок посредством двустороннего взаимодействия.

Именно использование оперативной информации отличает MES от ERP систем. В MES-системах модель производства определяется на стыке возможностей оборудования, доступности материалов и персонала. Любая MES должна ответить на следующие вопросы:

    Что должно быть произведено?

    Когда что надо производить?

    С помощью чего надо производить?

    Когда, как и что было уже произведено?

Используя данные уровней планирования и контроля, MES-системы управляют текущей производственной деятельностью в соответствии с поступающими заказами, требованиями конструкторской и технологической документации, актуальным состоянием оборудования, преследуя при этом цели максимальной эффективности и минимальной стоимости выполнения производственных процессов.

За счет быстрой реакции на происходящие события и применения математических методов компенсации отклонений от производственного расписания, MES системы позволяют оптимизировать производство и сделать его более рентабельным.

Диаграмма Ганта

Существуют разные подходы к планированию времени (тайм-менеджменту). Наиболее инновационной идеей здесь является диаграмма Ганта. Данная диаграмма состоит из полос, ориентированных вдоль оси времени. Каждая полоса представляет отдельную задачу в составе проекта, её концы – это моменты начала и завершения работы, её протяженность – длительность работы. Вертикальная ось является перечнем задач.


Первый формат диаграммы был разработан еще в 1910 г. Генри Л. Гантом (американский инженер, механик и специалист по менеджменту). Генри Гант еще изначально применял графическую информацию, отчитываясь перед своим начальством. В дальнейшем появились, прославившие его диаграммы Ганта. Многие склонны считать, что Гант стал одним из основоположников принципиально новых, более гуманных принципов производства и управления; ему же приписываются некоторые необычные идеи по правильной постановке задач и эффективной мотивации персонала.

Результаты внедрения MES

По данным различных компаний, можно выделить следующие основные результаты внедрения MES:

1. Увеличение экономической эффективности деятельности предприятия;
2. Увеличение скорости прохождения заказов до 40-50%
3. Повышение коэффициента загрузки станков на 30-40%
4. Снижение продолжительности цикла производства в среднем на 45%;
5. Снижение времени освоения новой продукции в среднем на 27%;
6. Сокращение объемов брака в среднем на 18%;
7. Сокращение объема незавершенной продукции на 25-30%;
8. Повышение надежности исполнения заказов в заданные сроки на 60%;
9. Снижение объема ненужной бумажной документации в среднем на 56%;
10. Повышение контроля выполнения технологических и производственных процессов;
11. Повышение прозрачности бизнес-процессов в части движения материальных потоков;
12. Качественное улучшение производственных показателей.

Внедрение MES-систем предоставит и множество других преимуществ, необходимых для достижения максимальной эффективности производства.

Снижение различных издержек, получение максимальной выгоды от уже существующих возможностей предприятия сегодня возможно только путем автоматизации планирования и управления производством - путем внедрения MES-систем.

Конечно, достижение успеха в конкурентной борьбе возможно и путем внедрения прогрессивных технологий, станков, инструментов, высокоскоростной обработки и т.д., но при относительно равных условиях большинства предприятий, достижение успеха становится возможным только путем грамотного и оперативного планирования и управления производством. Именно здесь находятся большие резервы по оптимизации производства и достижения максимального экономического эффекта.

MES – это принципиально важная функция, позволяющая создавать на производственном предприятии действительно эффективную систему управления. MES становится одним из ключевых элементов общекорпоративных систем современных предприятий.

Рассказать друзьям