Финансовая экосистема: все в одном. Информация экосистемы

💖 Нравится? Поделись с друзьями ссылкой

Экосистема — это функциональное единство живых организмов и среды их обитания. Основные характерные особенности экосистемы — ее безразмерность и безранговость. Замещение одних биоценозов другими в течение длительного периода времени называется сукцессией. Сукцессия, протекающая на вновь образовавшемся субстрате, называется первичной. Сукцессия на территории, уже занятой растительностью, называется вторичной.

Единицей классификации экосистем является биом — природная зона или область с определенными климатическими условиями и соответствующим набором доминирующих видов растений и животных.

Особая экосистема — биогеоценоз — участок земной поверхности с однородными природными явлениями. Составными частями биогеоценоза являются климатоп, эдафотоп, гидротоп (биотоп), а также фитоценоз, зооценоз и микробоценоз (биоценоз).

С целью получения продуктов питания человек искусственно создает агроэкосистемы. Они отличаются от естественных малой устойчивостью и стабильностью, однако более высокой продуктивностью.

Экосистемы — основные структурные единицы биосферы

Экологическая система, или экосистема, — основная функциональная единица в экологии, так как в нее входят организмы и

неживая среда — компоненты, взаимно влияющие на свойства друг друга, и необходимые условия для поддержания жизни в той ее форме, которая существует на Земле. Термин экосистема впервые был предложен в 1935 г. английским экологом А. Тенсли.

Таким образом, под экосистемой понимается совокупность живых организмов (сообществ) и среды их обитания, образующих благодаря круговороту веществ, устойчивую систему жизни.

Сообщества организмов связаны с неорганической средой теснейшими материально- энергетическими связями. Растения могут существовать только за счет постоянного поступления в них углекислого газа, воды, кислорода, минеральных солей. Гетеротрофы живут за счет автотрофов, но нуждаются в поступлении таких неорганических соединений, как кислород и вода.

В любом конкретном месте обитания запасов неорганических соединений, необходимых для поддержания жизнедеятельности населяющих его организмов, хватило бы ненадолго, если бы эти запасы не возобновлялись. Возврат биогенных элементов в среду происходит как в течение жизни организмов (в результате дыхания, экскреции, дефекации), так и после их смерти, в результате разложения трупов и растительных остатков.

Следовательно, сообщество образует с неорганической средой определенную систему, в которой поток атомов, вызываемый жизнедеятельностью организмов, имеет тенденцию замыкаться в круговорот.

Рис. 8.1. Структура биогеоценоза и схема взаимодействия между компонентами

В отечественной литературе широко применяется термин «биогеоценоз», предложенный в 1940 г.B . Н Сукачевым. По его определению, биогеоценоз — «совокупность на известном протяжении земной поверхности однородных природных явлений (атмосферы, горной породы, почвы и гидрологических условий), имеющая особую специфику взаимодействий этих слагающих ее компонентов и определенный тип обмена веществом и энергией их между собой и другими явлениями природы и представляющая собой внутренне противоречивое диалектическое единство, находящееся в постоянном движении, развитии».

В биогеоценозе В.Н. Сукачев выделял два блока: экотоп — совокупность условий абиотической среды и биоценоз — совокупность всех живых организмов (рис. 8.1). Экотоп часто рассматривают как абиотическую среду, не преобразованную растениями (первичный комплекс факторов физико-географической среды), а биотоп — как совокупность элементов абиотической среды, видоизмененных средообразующей деятельностью живых организмов.

Существует мнение, что термин «биогеоценоз» в значительно большей степени отражает структурные характеристики изучаемой макросистемы, тогда как в понятие «экосистема» вкладывается, прежде всего, ее функциональная сущность. Фактически же между этими терминами различий нет.

Следует указать, что совокупность специфического физико-хи- мического окружения (биотопа) с сообществом живых организмов (биоценозом) и образует экосистему:

Экосистема = Биотоп + Биоценоз.

Равновесное (устойчивое) состояние экосистемы обеспечивается на основе круговоротов веществ (см. п. 1.5). В этих круговоротах непосредственно участвуют все составные части экосистем.

Для поддержания круговорота веществ в экосистеме необходимо наличие запаса неорганических веществ в усвояемой форме и трех функционально различных экологических групп организмов: продуцентов, консументов и редуцентов.

Продуцентами выступают автотрофные организмы, способные строить свои тела за счет неорганических соединений (рис. 8.2).

Рис. 8.2. Продуценты

Консументы - гетеротрофные организмы, потребляющие органическое вещество продуцентов или других консументов и трансформирующие его в новые формы.

Редуценты живут за счет мертвого органического вещества, переводя его вновь в неорганические соединения. Классификация эта относительная, так как и консументы, и сами продуценты выступают частично в роли редуцентов в течение жизни, выделяя в окружающую среду минеральные продукты обмена веществ.

В принципе круговорот атомов может поддерживаться в системе и без промежуточного звена — консументов, за счет деятельности двух других групп. Однако такие экосистемы встречаются скорее как исключения, например на тех участках, где функционируют сообщества, сформированные только из микроорганизмов. Роль консументов выполняют в природе в основном животные, их деятельность по поддержанию и ускорению циклической миграции атомов в экосистемах сложна и многообразна.

Масштабы экосистемы в природе весьма различны. Неодинакова также степень замкнутости поддерживаемых в них круговоротов вещества, т.е. многократность вовлечения одних и тех же элементов в циклы. В качестве отдельных экосистем можно рассматривать, например, и подушку лишайников на стволе дерева, и разрушающийся пень с его населением, и небольшой временный водоем, луг, лес, степь, пустыню, весь океан и, наконец, всю поверхность Земли, занятую жизнью.

В некоторых типах экосистем вынос вещества за их пределы настолько велик, что их стабильность поддерживается в основном за счет притока такого же количества вещества извне, тогда как внутренний круговорот малоэффективен. Таковы проточные водоемы, реки, ручьи, участки на крутых склонах гор. Другие экосистемы имеют значительно более полный круговорот веществ и относительно автономны (леса, луга, озера и т.п.).

Экосистема — практически замкнутая система. В этом состоит принципиальное отличие экосистем от сообществ и популяций, являющиеся открытыми системами, обменивающимися со средой обитания энергией, веществом и информацией.

Однако ни одна экосистема Земли не имеет полностью замкнутого круговорота, поскольку минимальный обмен массой со средой обитания все-таки происходит.

Экосистема является совокупностью взаимосвязанных энергопотребителей, совершающих работу по поддержанию ее неравновесного состояния относительно среды обитания за счет использования потока солнечной энергии.

В соответствии с иерархией сообществ жизнь на Земле проявляется и в иерархичности соответствующих экосистем. Экосистемная организация жизни является одним из необходимых условий ее существования. Как уже отмечалось, запасы биогенных элементов, необходимых для жизни организмов на Земле в целом и на каждом конкретном участке на ее поверхности, небезграничны. Лишь система круговоротов могла придать этим запасам свойство бесконечности, необходимое для продолжения жизни.

Поддерживать и осуществлять круговорот могут только функционально различные группы организмов. Функционально-экологическое разнообразие живых существ и организация потока извлекаемых из окружающей среды веществ в циклы — древнейшее свойство жизни.

С этой точки зрения устойчивое существование многих видов в экосистеме достигается за счет постоянно происходящих в ней естественных нарушений местообитаний, позволяющих новым поколениям занимать вновь освободившееся пространство.

Концепция экосистемы

Основным объектом изучения экологии являются экологические системы, или экосистемы. Экосистема занимает следующее после биоценоза место в системе уровней живой природы. Говоря о биоценозе, мы имели в виду только живые организмы. Если же рассматривать живые организмы (биоценоз) в совокупности с факторами окружающей среды, то это уже экосистема. Таким образом, экосистема — природный комплекс (биокосная система), образованный живыми организмами (биоценоз) и средой их обитания (например, атмосфера — косной, почва, водоем — биокосной и т.д.), связанными между собой обменом веществ и энергии.

Общепринятый в экологии термин «экосистема» ввел в 1935 г. английский ботаник А. Тенсли. Он считал, что экосистемы, «с точки зрения эколога представляют собой основные природные единицы на поверхности земли», в которые входит «не только комплекс организмов, но и весь комплекс физических факторов, образующих то, что мы называем средой биома, — факторы местообитания в самом широком смысле». Тенсли подчеркивал, что для экосистем характерен разного рода обмен веществ не только между организмами, но и между органическим и неорганическим веществом. Это не только комплекс живых организмов, но и сочетание физических факторов.

Экосистема (экологическая система) — основная функциональная единица экологии, представляющая собой единство живых организмов и среды их обитания, организованное потоками энергии и биологическим круговоротом веществ. Это фундаментальная общность живого и среды его обитания, любая совокупность совместно обитающих живых организмов и условий их существования (рис. 8).

Рис. 8. Различные экосистемы: а — пруда средней полосы (1 — фитопланктон; 2 — зоопланктон; 3 — жуки-плавунцы (личинки и взрослые особи); 4- молодые карпы; 5 — щуки; 6 — личинки хорономид (комаров-дергунцов); 7- бактерии; 8 — насекомые прибрежной растительности; б — луга (I — абиотические вещества, т.е. основные неорганические и органические слагаемые); II- продуценты (растительность); III- макроконсументы (животные): А — травоядные (кобылки, полевые мыши и т.д.); В — косвенные или питающиеся детритом консументы, или сапробы (почвенные беспозвоночные); С- «верховые» хищники (ястребы); IV- разлагатели (гнилостные бактерии и грибы)

Понятие «экосистема» можно применить к объектам различной степени сложности и величины. Примером экосистемы может служить тропический лес в определенном месте и в конкретный момент времени, населенный тысячами видов живущих вместе растений, животных и микробов и связанный происходящими между ними взаимодействиями. Экосистемами являются такие природные образования, как океан, море, озеро, луг, болото. Экосистемой может быть кочка на болоте и гниющее дерево в лесу с живущими на них и в них организмами, муравейник с муравьями. Самой большой экосистемой является планета Земля.

Каждая экосистема может характеризоваться определенными границами (экосистема елового леса, экосистема низинного болота). Однако само понятие «экосистема» безранговое. Она обладает признаком безразмерности, ей не свойственны территориальные ограничения. Обычно экосистемы разграничиваются элементами абиотической среды, например рельефом, видовым разнообразием, физико-химическими и трофическими условиями и т.н. Размер экосистем не может быть выражен в физических единицах измерения (площадь, длина, объем и т.д.). Он выражается системной мерой, учитывающей процессы обмена веществ и энергии. Поэтому под экосистемой обычно понимают совокупность компонентов биотической (живые организмы) и абиотической среды, при взаимодействии которых происходит более или менее полный биотический круговорот, в котором участвуют продуценты, консументы и редуценты. Термин «экосистема» применяется и по отношению к искусственным образованиям, например экосистема парка, сельскохозяйственная экосистема (агроэкосистема).

Экосистемы можно разделить на микроэкосистемы (дерево в лесу, прибрежные заросли водных растений), мезоэкосистемы (болото, сосновый лес, ржаное поле) и макроэкосистемы (океан, море, пустыня).

О равновесии в экосистемах

Равновесными называются такие экосистемы, которые «контролируют» концентрации биогенов, поддерживая их равновесие с твердыми фазами. Твердые же фазы (остатками живых организмов) являются продуктами жизнедеятельности биоты. Равновесными будут и те сообщества и популяции, которые входят в равновесную экосистему. Такой вид биологического равновесия называется подвижным , поскольку процессы отмирания непрерывно компенсируются появлением новых организмов.

Равновесные экосистемы подчиняются принципу устойчивости Лe Шателье. Следовательно, эти экосистемы обладают гомеоста- зом, — иными словами, способны минимизировать внешнее воздействие при сохранении внутреннего равновесия. Устойчивость экосистем достигается не смещением химических равновесий, а путем изменения скоростей синтеза и разложения биогенов.

Особый интерес представляет способ поддержания устойчивости экосистем, основанный на вовлечении в биологический круговорот органического веществ, ранее произведенного экосистемой и отложенного «про запас» — древесины и мортмассы (торф, гумус, подстилка). В этом случае древесина служит как бы индивидуальным материальным богатством, а мортмасса — коллективным, принадлежащим экосистеме в целом. Это «материальное богатство» увеличивает запас устойчивости экосистем, обеспечивая их выживание при неблагоприятных изменениях климата, стихийных бедствиях и др.

Устойчивость экосистемы тем больше, чем больше она по размеру и чем богаче и разнообразнее ее видовой и популяционный состав.

Экосистемы разного типа используют различные варианты индивидуальных и коллективных способов запасания устойчивости при различном соотношении индивидуального и коллективного материального богатства.

Таким образом, основная функция совокупности живых существ (сообщества), входящих в экосистему, — обеспечить равновесное (устойчивое) состояние экосистемы на основе замкнутого круговорота веществ.

Мобильные технологии открывают не только массу возможностей, но и немало проблем. Экосистемы мобильных технологий призваны объединить поставщиков платформ, разработчиков, производителей и пользователей для получения преимуществ для всех.

05.03.2014 Сергей Авдошин, Елена Песоцкая

Мобильные технологии открывают перед владельцами и разработчиками платформ не только массу возможностей, но и немало проблем, вызванных высокой конкуренцией в этой сфере. Экосистемы мобильных технологий призваны объединить поставщиков платформ, разработчиков, производителей и пользователей для получения максимально возможных преимуществ для всех. Какие имеются подходы к созданию таких экосистем, кто их ключевые участники и как они создаются?

Появление смартфонов и планшетов вызвало революцию в индустрии потребительской электроники, что неизбежно привело к эволюции программного обеспечения, которое все реже является плодом усилий одной команды, а создается в рамках альянсов - экосистем, включающих разработчиков самого приложения, среды его разработки, эксплуатации, сопровождения и утилизации. Все эти компоненты связаны между собой процессами обмена программными продуктами и «интеллектом» . В России мобильная экосистема только начинает свое развитие, что связано, в частности, с меньшим пока проникновением мобильных устройств и отсутствием у большинства предприятий стратегии мобилизации.

Принципы экосистемы

Часто экосистема образуется из связанных проектов и технологий, многие из которых сначала развивались в рамках проекта, а впоследствии стали самостоятельными приложениями или продуктами . Можно привести множество примеров, когда крупные поставщики в том или ином виде включают распространенные сервисы (например, Hadoop, Skype, Adobe) в свои продуктовые линейки. Изначально принцип экосистем использовали несколько компаний, которые совмещали разработку программного и аппаратного обеспечения. Так, мобильные телефоны были созданы небольшими группами вертикально интегрированных компаний, которые разрабатывали аппаратное обеспечение, прошивки и приложения, а также непосредственно аппараты, - например, Nokia, Siemens, Ericsson и Motorola. С появлением смартфонов инвестиции в развитие как аппаратного, так и программного обеспечения значительно выросли, и такие компании сделали программные платформы доступными внешним разработчикам, создав начальную экосистему и вернувшись к своей основной деятельности по проектированию и дизайну оборудования.

Вскоре от таких компаний, как Google, Samsung, Oracle, SAP, Microsoft, Apple, последовало новое поколение решений - программные платформы, подходящие для любых устройств. Эти компании уже заявили о своих продуктах как о части экосистемы. Принципиально экосистемы отличаются возможностью изменения платформ, что, в свою очередь, влияет на оптимальный масштаб и технологии проектирования.

Экосистема процветает, когда компания может предложить своим клиентам широкий выбор продуктов, удовлетворяющих все их потребности, - например, Windows является частью экосистемы, в которую вовлечены сотни тысяч людей, чье предназначение состоит в том, чтобы предлагать пользователям выбор конфигураций компьютера, настроек ОС и приложений. Разработчики Windows стараются предоставить пользователю максимальный выбор продуктов и услуг всей экосистемы - вещи работают лучше, когда аппаратное и программное обеспечение обдумывается и создается сообща. Одна из целей, которую преследует Microsoft, взявшись за выпуск планшетов, - сыграть роль катализатора для привлечения к Windows 8 как можно больше производителей и разработчиков.

Экосистема позволяет распределять усилия между участниками - некоторые сосредоточены на аппаратной платформе, а другие вовлечены в процесс интеграции своего программного обеспечения поверх существующих платформ. Будучи в экосистеме, компании могут эффективно распределить все функции управления разработкой программного обеспечения - от поиска ниши и целевой аудитории до выпуска продукта и его продвижения на рынок. Вот основные причины, по которым экосистемы набирают популярность:

  • предоставление большего выбора и расширение текущего предложения для уже имеющихся клиентов и пользователей;
  • повышение привлекательности для новых клиентов и пользователей, снижение затрат на модернизацию функциональности путем деления расходов на техническое обслуживание и прочие непрофильные функции с другими участниками экосистемы;
  • ускорение внедрения новаций в экосистеме за счет более динамичной обратной связи от участников;
  • формирование новых принципов программно-аппаратного взаимодействия и разработки универсальных масштабируемых платформ для предоставления более широкого спектра программных услуг.

Участники экосистемы

Экосистема создает условия, при которых процесс модернизации и внедрения новаций предопределяют именно коллективные усилия партнеров, а не деятельность кого-либо в отдельности. Партнерская экосистема включает в себя поставщиков услуг, дистрибьюторов, изготовителей оборудования, системных интеграторов и разработчиков программных решений (рис. 1). Отдельно среди участников экосистемы стоит отметить всех заинтересованных лиц и энтузиастов, способных коммуницировать свои потребности и таким образом стимулировать всех участников экосистемы.

В рамках экосистемы разрабатывается и реализуется комплексное консультационное сопровождение программных решений, обеспечивающих полноценное управление в реальном времени, что позволяет сократить сроки вывода продукта на рынок, а также повысить рентабельность инвестиций и качество обслуживания клиентов. Чем больше клиентов пользуется технологиями экосистемы, тем интенсивнее протекает процесс развития инноваций, что, в свою очередь, расширяет выбор доступных продуктов и повышает степень удовлетворения запросов потребителей.

Для создания экосистемы участники принимают решение о том, кто будет наилучшим партнером с учетом стратегии организации, какие услуги и продукты будет производить компания и каким будет качество этих услуг. Решения (например - «сделать или купить») относятся к важным факторам при формировании модели экосистемы. Иными словами, организация должна принять решение о своем видении продукта, особенностях разработки и продвижения, взаимодействия с другими продуктами и партнерства со сторонними организациями. Эти формы сотрудничества ведут к более целенаправленным инвестициям в разработки, более динамичному развитию технологий и повышению продаж программных продуктов в рамках экосистемы.

Сегодня компании-разработчики мобильных приложений активно взаимодействуют с конечными пользователями, получают обратную связь, оценивают степень удовлетворенности продуктом, собирают пожелания для более качественной доработки. Компания, входящая в состав экосистемы, может выполнять сразу обе роли: предоставлять услуги другим компаниям, став их ключевым поставщиком, а также потреблять услуги другого партнера или нишевого игрока экосистемы. Эта двойная роль наблюдается в биологических экосистемах, из которых и заимствован данный термин .

Классификация экосистем

Наиболее выпукло классификация экосистем видна на рынке мобильных систем, где присутствует множество конкурентов (WebOS, Android, LiMo, Symbian, Windows Mobile, MeeGo и т. д.) и до 2009 года не было явного выделения кого-либо одного. Начиная с 2010 года многие вертикально интегрированные компании потеряли долю рынка, и рынок начала завоевывать открытая платформа Android. Одновременно Microsoft, доминирующий игрок на рынке персональных компьютеров, активизировала свои усилия в области мобильных платформ и приложений. В результате последние несколько лет прошли в ожесточенной борьбе между экосистемами разных типов. Их образуют:

  • Вертикально интегрированные компании, занимающиеся разработкой аппаратно-программных платформ и снабжающие свои устройства программным обеспечением (Apple, RIM, Nokia и Samsung с Bada - платформой, прекратившей существование в 2013 году). Их партнерами являются разработчики приложений.
  • Производители платформ, предлагающие программное обеспечение с закрытым исходным кодом и платформу для нескольких производителей, например Windows Phone и WebOS (2010–2012 годы). Партнерами здесь выступают поставщики аппаратных платформ, системные интеграторы, производители телефонов и разработчики приложений.
  • Производители программных платформ с открытым исходным кодом, работающие на основе следующей концепции: несколько участников (партнеров) могут объединить усилия в области развития программных продуктов, и с учетом того, что источник открыт, производители телефонов могут изменять, добавлять или удалять функции (Android, Tizen и Firefox OS). Партнерами выступают поставщики аппаратных платформ, системные интеграторы, производители телефонов и разработчики приложений.
  • Производители открытого ПО и аппаратных платформ. Пользователи имеют возможность самостоятельно изменить код и добавить собственные функции - пока на рынке нет аппаратных платформ с открытым кодом, и их появление могло бы стать технологическим прорывом, как и в случае с Android. Поставщики и производители аппаратных платформ для мобильных телефонов, использующие программное обеспечение с открытым исходным кодом, не принадлежат к экосистеме этого типа, так как являются партнерами другой экосистемы - программной платформы с открытым исходным кодом.

Среди открытых платформ разработки можно отметить платформу Eclipse, развиваемую сообществом пользователей и фактически представляющую собой базу, на которой можно строить многофункциональные и многоязыковые среды разработки . Ключевое значение для развития рынка программных средств разработки имеет участие в проекте Eclipse коммерческих компаний, которые получают от проекта готовые базовые сервисы среды разработки, нейтральные к языкам и операционным платформам, а зарабатывают на распространении сложной функциональности.

Сегодня крупные компании все больше отходят от продуктовых линеек к экосистемам, и здесь наблюдается обострение противостояния трех наиболее крупных игроков: Apple, Google и Microsoft - каждый из которых старается расширять свою экосистему за счет выхода на новые сегменты рынка и новой интеллектуальной собственности, получаемой путем приобретения перспективных разработчиков. Корпорация Microsoft приобрела в 2011 году Skype Technologies, а в 2013-м - принадлежавший Nokia бизнес мобильных устройств. Из крупнейших приобретений Google стоит отметить Motorola Mobility, Nest, DoubleClick и сервис YouTube. Компания Apple, следовавшая до сих пор умеренной политике слияний, продвигавшейся при Стиве Джобсе, который считал, что они «ставят крест на инновациях» , озадачилась сегодня поисками на рынке прорывных решений.

Мобильные технологии стимулируют развитие экосистем, что ярко видно на примере экосистемы iPhone (рис. 2), образованной из: разработчиков ПО; проектировщиков; дистрибьюторов и магазинов, предоставляющих сервисное обслуживание; производителей устройств; провайдеров сотовой связи; маркетологов; пользователей.

В данной экосистеме отсутствуют системные интеграторы (либо поставщики лицензий) - Apple фокусируется на разработке платформы и дизайна сложных программных интерфейсов на ограниченном аппаратном комплексе с использованием стандартных языков C++ и Objective-C. В отличие от этой экосистемы, где фактически один производитель монополизировал распространение приложений, экосистема Android взаимодействует с множеством магазинов, дистрибьюторов и рынков, что предоставляет Android гораздо больше свободного пространства на рынке и потенциально больше возможностей. Эта экосистема содержит больше, чем у iPhone, игроков и партнеров.

В мобильных устройствах часто возникают конфликтующие требования - например, использование вспышки на устройствах. С одной стороны, отказ от вспышки приводит к увеличению продолжительности жизни батареи, а с другой - входит в конфликт с использованием стандарта кодирования видео H.264, на который рассчитано устройство. Учитывая нынешнюю скорость инноваций, коммерческий жизненный цикл продукта можно определить в два года - компания, которая за это время не выведет на рынок продукт, отвечающий или предупреждающий потребности клиента, быстро теряет рынок. Грамотно выбранная экосистема позволяет уложиться в этот срок и найти, например, компромисс в конфликте со вспышкой.

Говоря о мобильных экосистемах, следует рассматривать не только рынок мобильных устройств и приложений, но и такие рынки, как мобильный банкинг. В экосистему мобильного банка вовлечены разработчики, веб-дизайнеры, администраторы, системные аналитики, специалисты банковской отрасли и клиенты банка. Здесь сегодня прослеживаются три основные тенденции. Первая - наращивание функционала мобильных приложений и возможностей для пользователя. Вторая - повышение удобства пользования (адаптация приложений к экрану устройства, персональная настройка интерфейса и т. п.). Третья - использование технологических особенностей мобильного телефона: геолокация, дополненная реальность, камеры, сканеры, блокировка по отпечаткам пальцев и т. п. В России почти треть из 200 крупнейших банков предлагают своим клиентам мобильный интерфейс для управления счетами. Потенциальная аудитория такого сервиса - 20 млн клиентов, но реально им пользуются 2 млн человек.

Активными технологическими игроками являются компании Digital Zone и Bercut, запустившие экосистему мобильного банкинга и электронной коммерции - Mobile identity. Предлагаемый этой экосистемой сервис позволяет получить доступ к услугам идентификации операторов связи, благодаря чему клиенты компании поьзуются персонализированными услугами. Набирают популярность сервисы мобильных кошельков - например, на базе облачного решения Wallet One компании Wallet One Digital Payment System. В части интернет-эквайринга в мобильных приложениях стоит отметить компанию PayOnline, которая совместно с Microsoft разработала Payment SDK для магазина приложений Windows. Этот инструментарий позволяет разработчикам интегрировать средства приема платежей по банковским картам в приложения, работающие на платформах Windows 8 и Windows Phone.

Текстовая и медийная реклама в мобильной экосистеме - другой распространенный вид сервисов для пользователей. Экосистема образуется здесь за счет множества различных поставщиков мобильной рекламы - прямых площадок («Яндекс», Mail.ru и пр.), мобильных рекламных сетей и сервисов, агентств мобильной рекламы. С помощью мобильных приложений пользователи получают постоянный источник информации на своем устройстве.

Еще один пример - экосистема социальных сервисов, меняющая модель создания, нахождения и потребления контента, открывающая новую эру в процессах генерации новостей в режиме реального времени.

Дальнейшее развитие индустрии программного обеспечения, особенно в области мобильных приложений, скоро будет невозможно без соответствующей экосистемы. В современных условиях компаниям, которые хотят быть успешными, требуется занять новую нишу и иначе взаимодействовать с другими заинтересованными субъектами на уровне экосистемы, в то же время обеспечивая максимальную производительность и надежность внутри самой компании. Вместе с тем экосистемы - это не только вызов для многих организаций, но и новые возможности по аккумуляции обратной связи, сбору данных об удовлетворенности клиентов и по учету других аспектов, которые до сих пор упускались из виду.

Литература

  1. Jansen, S., Brinkkemper, S., Cusumano, M.A., eds.: Software Ecosystems: Analyzing and Managing Business Networks in the Software Industry // Edward Elgar Publishing, Cheltenham, UK (2013) P. 85–102.
  2. H. Hartmann, T. Trew, J. Bosch. The changing industry structure of software development for consumer electronics and its consequences for software architectures // The Journal of Systems & Software 85 (2012), P. 178–192.
  3. G.K. Hanssen. A longitudinal case study of an emerging software ecosystem: Implications for practice and theory // J. Syst. Softw. 85 (2012) P. 1455–1466.
  4. S. Jobs: Thought on Flash. April 2010, http://www.apple.com/hotnews/thoughts-on-flash (accessed November 24, 2011).
  5. Наталья Дубова. // Открытые системы. СУБД. - № 03. - 2005. - С. 26–31. URL: http://www..03.2014).

Сергей Авдошин ([email protected]) - заведующий, Елена Песоцкая ([email protected]) - доцент, кафедра управления разработкой программного обеспечения, Национальный исследовательский университет «Высшая школа экономики» (Москва).



Экосистема включает в себя все живые организмы (растения, животные, грибы и микроорганизмы), которые в той или иной степени, взаимодействуют друг с другом и окружающей их неживой средой (климат, почва, солнечный свет, воздух, атмосфера, вода и т.п.).

Экосистема не имеет определенного размера. Она может быть столь же большой, как пустыня или озеро, или маленькой, как дерево или лужа. Вода, температура, растения, животные, воздух, свет и почва - все взаимодействуют вместе.

Суть экосистемы

В экосистеме каждый организм имеет свое собственное место или роль.

Рассмотрим экосистему небольшого озера. В нем, можно найти все виды живых организмов, от микроскопических до животных и растений. Они зависят от , такой как вода, солнечный свет, воздух и даже от количества питательных веществ в воде. (Нажмите , чтобы узнать подробнее о пяти основных потребностях живых организмов).

Схема экосистемы озера

Каждый раз, когда "постороннее" (живое существо(а) или внешний фактор, например, повышение температуры) вводятся в экосистему, могут произойти катастрофические последствия. Это происходит потому, что новый организм (или фактор) способен искажать естественный баланс взаимодействия и нести потенциальный вред или разрушение неродной экосистеме.

Как правило, биотические члены экосистемы, вместе с их абиотическими факторами зависят друг от друга. Это означает отсутствие одного члена или одного абиотического фактора может повлиять на всю экологическую систему.

Если нет достаточного количества света и воды, или, если почва содержит мало питательных веществ, растения могут погибнуть. Если растения погибают, животные, которые от них зависят также оказываются по угрозой. Если животные, зависящие от растений гибнут, то другие животные, зависящие от них также погибнут. Экосистема в природе работает одинаково. Все ее части должны функционировать вместе, чтобы поддерживать баланс!

К сожалению, экосистемы могут разрушиться в результате стихийных бедствий, таких как пожары, наводнения, ураганы и извержения вулканов. Человеческая деятельность также способствует разрушению многих экосистем и .

Основные виды экосистем

Экологические системы имеют неопределенные размеры. Они способны существовать на небольшом пространстве, например под камнем, гниющем пне дерева или в небольшом озере, а также занимать значительные территории (как весь тропический лес). С технической точки зрения, нашу планету можно назвать одной огромной экосистемой.

Схема небольшой экосистемы гниющего пня

Виды экосистем в зависимости от масштаба:

  • Микроэкосистема - экосистема небольшого масштаба, как пруд, лужа, пень дерева и т.д.
  • Мезоэкосистема - экосистема, такая, как лес или большое озеро.
  • Биом. Очень большая экосистема или совокупность экосистем с аналогичными биотическими и абиотическими факторами, такими как целый тропический лес с миллионами животных и деревьев, и множеством различных водных объектов.

Границы экосистем не обозначены четкими линиями. Их часто разделяют географические барьеры, такие как пустыни, горы, океаны, озера и реки. Поскольку границы не являются строго установленными, экосистемы, как правило, сливаются друг с другом. Вот почему озеро может иметь множество небольших экосистем со своими собственными уникальными характеристиками. Ученые называют такое смешивание "Экотон".

Виды экосистем по типу возникновения:

Помимо вышеперечисленных видов экосистем, существует также разделение на естественные и искусственные экологические системы. Естественная экосистема создается природой (лес, озеро, степь и т.д.), а искусственная - человеком (сад, приусадебный участок, парк, поле и др.).

Типы экосистем

Существует два основных типа экосистем: водные и наземные. Любые другие экосистемы мира относятся к одой из этих двух категорий.

Наземные экосистемы

Наземные экосистемы могут быть найдены в любом месте мира и подразделены на:

Лесные экосистемы

Это экосистемы, в которых есть обилие растительности или большое количество организмов, живущих в относительно небольшом пространстве. Таким образом, в лесных экосистемах плотность живых организмов достаточно высока. Небольшое изменение в этой экосистеме может повлиять на весь ее баланс. Также, в таких экосистемах можно встретить огромное количество представителей фауны. Кроме того, лесные экосистемы подразделяются на:

  • Тропические вечнозеленые леса или тропические дождевые леса: , получающие среднее количество осадков более 2000 мм в год. Они характеризуются густой растительностью, в которой преобладают высокие деревья, расположенные на разных высотах. Эти территории являются убежищем для различных видов животных.
  • Тропические лиственные леса: Наряду с огромным разнообразием видов деревьев, здесь также встречаются кустарники. Данный тип леса встречается в довольно многих уголках планеты и является домом для большого разнообразия представителей флоры и фауны.
  • : Имеют довольно небольшое количество деревьев. Здесь преобладают вечнозеленые деревья, которые обновляют свою листву в течение всего года.
  • Широколиственные леса: Расположены во влажных умеренных регионах, которые имеют достаточное количество осадков. В зимние месяца, деревья сбрасывают свою листву.
  • : Расположенная непосредственно перед , тайга определяется вечнозелеными хвойными деревьями, минусовыми температурами на протяжении полугода и кислыми почвам. В теплое время года здесь можно встретить большое количество перелетных птиц, насекомых и .

Пустынная экосистема

Пустынные экосистемы расположены в районах пустынь и получают менее 250 мм осадков в год. Они занимают около 17 % всей суши Земли. Из-за чрезвычайно высокой температуры воздуха, плохого доступа к и интенсивного солнечного света, и не столь богаты, как в других экосистемах.

Экосистема луга

Луга расположены в тропических и умеренных регионах мира. Территория луга в основном состоит из трав, с небольшим количеством деревьев и кустарников. Луга населяют пасущиеся животные, насекомоядные и растительноядные. Выделяется два основных вида экосистем луга:

  • : Тропические луга, имеющие сухой сезон и характеризующиеся отдельно растущими деревьями. Они обеспечивают пищей большое количество травоядных животных, а также являются местом охоты многих хищников.
  • Прерии (умеренные луга): Это область с умеренным травяным покровом, полностью лишенная крупных кустарников и деревьев. В прериях встречается разнотравье и высокая трава, а также наблюдаются засушливые климатические условия.
  • Степные луга: Территории сухих лугов, которые располагаются вблизи полузасушливых пустынь. Растительность этих лугов короче, чем в саваннах и прериях. Деревья встречаются редко, и как правило, находятся на берегах рек и ручьев.

Горные экосистемы

Горная местность обеспечивает разнообразный спектр местообитаний, где можно найти большое количество животных и растений. На высоте, обычно преобладают суровые климатические условия, в которых могут выжить только альпийские растения. Животные, обитающие высоко в горах, имеют толстые шубы для защиты от холодов. Нижние склоны, как правило, покрыты хвойными лесами.

Водные экосистемы

Водная экосистема - экосистема, расположенная в водной среде (например, реки, озера, моря и океаны). Она включает в себя водную флору, фауну, а также свойства воды, и подразделяется на два типа: морскую и пресноводную экологические системы.

Морские экосистемы

Являются крупнейшими экосистемами, которые покрывают около 71% поверхности Земли и содержат 97% воды планеты. Морская вода содержит большое количество растворенных минералов и солей. Морская экологическая система подразделяется на:

  • Океаническую (относительно мелкая часть океана, которая находится на континентальном шельфе);
  • Профундальную зону (глубоководная область не пронизанная солнечным светом);
  • Бентальную область (область, заселенная донными организмами);
  • Приливную зону (место между низкими и высокими приливами);
  • Лиманы;
  • Коралловые рифы;
  • Солончаки;
  • Гидротермальные жерла, где хемосинтезирующие составляют кормовую базу.

Многие виды организмов живут в морских экосистемах, а именно: бурые водоросли, кораллы, головоногие моллюски, иглокожие, динофлагелляты, акулы и т.д.

Пресноводные экосистемы

В отличие от морских экосистем, пресноводные охватывают лишь 0,8% поверхности Земли и содержат 0,009% от общего количества мировых запасов воды. Существует три основных вида пресноводных экосистем:

  • Стоячие: воды, где отсутствует течение, как бассейны, озера или пруды.
  • Проточные: быстро движущиеся воды, такие как ручьи и реки.
  • Водно-болотные угодья: места, в которых постоянно или периодически затопленная почва.

Пресноводные экосистемы являются местами обитания рептилий, земноводных и около 41% видов рыб в мире. Быстро движущиеся воды обычно содержат более высокую концентрацию растворенного кислорода, тем самым поддерживают большее биологическое разнообразие, чем стоячие воды прудов или озер.

Структура, компоненты и факторы экосистемы

Экосистема определяется как природная функциональная экологическая единица, состоящая из живых организмов (биоценоза) и их неживой окружающей среды (абиотической или физико-химической), которые взаимодействуют между собой и создают стабильную систему. Пруд, озеро, пустыня, пастбища, луга, леса и т.д. являются распространенными примерами экосистем.

Каждая экосистема состоит из абиотических и биотических компонентов:

Структура экосистемы

Абиотические компоненты

Абиотические компоненты представляют собой не связанные между собой факторы жизни или физическую среду, которая оказывает влияние на структуру, распределение, поведение и взаимодействие живых организмов.

Абиотические компоненты представлены в основном двумя типами:

  • Климатическими факторами , которые включают в себя дождь, температуру, свет, ветер, влажность и т.д.
  • Эдафическими факторами , включающие в себя кислотность почвы, рельеф, минерализацию и т.д.

Значение абиотических компонентов

Атмосфера обеспечивает живые организмы углекислым газом (для фотосинтеза) и кислородом (для дыхания). Процессы испарения, транспирации и происходят между атмосферой и поверхностью Земли.

Солнечное излучение нагревает атмосферу и испаряет воду. Свет также необходим для фотосинтеза. обеспечивает растения энергией, для роста и обмена веществ, а также органическими продуктами для питания других форм жизни.

Большинство живой ткани состоит из высокого процента воды, до 90% и даже более. Немногие клетки способны выжить, если содержание воды падает ниже 10%, и большинство из них погибают, когда вода составляет менее 30-50%.

Вода является средой, с помощью которой минеральные пищевые продукты поступают в растения. Она также необходима для фотосинтеза. Растения и животные получают воду с поверхности Земли и почвы. Основной источник воды - атмосферные осадки.

Биотические компоненты

Живые существа, включая растения, животных и микроорганизмы (бактерии и грибы), присутствующие в экосистеме, являются биотическими компонентами.

На основе их роли в экологической системе, биотические компоненты могут быть разделены на три основные группы:

  • Продуценты производят органические вещества из неорганических, используя солнечную энергию;
  • Консументы питаются готовыми органическими веществами, произведенными продуцентами (травоядные, хищники и );
  • Редуценты. Бактерии и грибы, разрушающие отмершие органические соединения продуцентов (растений) и консументов (животных) для питания, и выбрасывающие в окружающую среду простые вещества (неорганические и органические), образующихся в качестве побочных продуктов их метаболизма.

Эти простые вещества повторно производятся в результате циклического обмена веществ между биотическим сообществом и абиотической средой экосистемы.

Уровни экосистемы

Для понимания уровней экосистемы, рассмотрим следующий рисунок:

Схема уровней экосистемы

Особь

Особь - это любое живое существо или организм. Особи не размножаются с индивидуумами из других групп. Животные, в отличие от растений, как правило, относятся к этому понятию, поскольку некоторые представители флоры могут скрещиваться с другими видами.

В приведенной выше схеме, можно заметить, что золотая рыбка взаимодействует с окружающей средой и будет размножаться исключительно с представителями своего вида.

Популяция

Популяция - группа особей данного вида, которые живут в определенной географической области в данный момент времени. (Примером может служить золотая рыбка и представители ее вида). Обратите внимание, что популяция включает особей одного вида, которые могут иметь различные генетические отличия, такие как цвет шерсти/глаз/кожи и размер тела.

Сообщество

Сообщество включает в себя всех живых организмов на определенной территории, в данный момент времени. В нем могут присутствовать популяции живых организмов разных видов. В приведенной выше схеме, обратите внимание, как золотые рыбы, лососёвые, крабы и медузы сосуществуют в определенной среде. Большое сообщество, как правило, включает в себя биоразнообразие.

Экосистема

Экосистема включает в себя сообщества живых организмов, взаимодействующих с окружающей средой. На этом уровне живые организмы зависят от других абиотических факторов, таких как камни, вода, воздух и температура.

Биом

Простыми словами, представляет собой совокупность экосистем, имеющих схожие характеристики с их абиотическими факторами, адаптированными к окружающей среде.

Биосфера

Когда мы рассматриваем различные биомы, каждый из которых переходит в другой, формируется огромное сообщество людей, животных и растений, живущих в определенных местах обитания. является совокупностью всех экосистем, представленных на Земле.

Пищевая цепь и энергия в экосистеме

Все живые существа должны питаться, чтобы получать энергию, необходимую для роста, движения и размножения. Но чем же эти живые организмы питаются? Растения получают энергию от Солнца, некоторые животные едят растения, а другие едят животных. Это соотношение кормления в экосистеме, называется пищевой цепью. Пищевые цепи, как правило, представляют последовательность того, кто кем питается в биологическом сообществе.

Ниже приведены некоторые живые организмы, которые могут разместиться в пищевой цепи:

Схема пищевой цепи

Пищевая цепь - это не одно и то же, что и . Трофическая сеть представляет собой совокупность многих пищевых цепей и является сложной структурой.

Передача энергии

Энергия передается по пищевым цепям от одного уровня к другому. Часть энергии используется для роста, размножения, передвижения и других потребностей, и не доступна для следующего уровня.

Более короткие пищевые цепи сохраняют больше энергии, чем длинные. Израсходованная энергия поглощается окружающей средой.

Для российских производителей микроэлектроники разрушение сложившихся рынков проприетарных решений является, возможно, единственным шансом на преодоление разрыва в масштабе деятельности с зарубежными конкурентами

В цифровой экономике доступность информационных технологий теряет дифференцирующее значение. Информационные технологии будут проникать во все сферы деятельности во всех странах.

Ключевыми становятся вопросы субъектности: участвует ли страна в развитии технологий, используя цифровизацию в интересах своей экономики и безопасности, или она становится пассивным объектом цифровизации - потребителем технологий и поставщиком сырья и трудовых ресурсов.

Россия сейчас ближе ко второму варианту, что существенно повышает зависимость национальной экономики от стран - технологических лидеров. Цифровизация в текущей концепции ведет к поляризации доходов - увеличению экономики стран, которые развивают и контролируют технологии, и сокращению экономики сырьевых стран.

Главный вызов для России - переход от пассивного потребления к активной роли в создании и развитии технологий. Основной барьер на этом пути - широкое использование закрытых защищенных (проприетарных) решений зарубежных корпораций. По сути Россия сейчас находится в плену этих технологий. Российским заказчикам удобнее использовать решения зарубежных корпораций, выплачивая правообладателям интеллектуальной собственности технологическую ренту. То, что часто называется трансфером технологий, фактически является формированием зависимости, когда российские компании могут только использовать технологию, но не имеют возможности ее самостоятельно развивать и контролировать составляющие процессы.

Использование закрытых защищенных технологий, разработанных российскими компаниями, не выход. Фактор политических рисков снижается, но при этом возрастают риски технологической консервации и «феодализации» рынка. Отставание от передового мирового уровня увеличивается, а когда разрыв становится неприемлемым, заказчики переходят на использование зарубежных технологий. Сначала это происходит в виде временных исключений, затем число исключений растет и превращается в системный процесс. Наиболее наглядно это проявляется в использовании зарубежных электронных компонентов предприятиями ВПК.

Решение проблемы - переход от использования закрытых проприетарных технологий к совместному использованию и развитию открытых технологий, свободно распространяемых или коммерчески доступных. Это решение не только для России, но и для всех стран, перед которыми стоит проблема технологической независимости.

Коммерциализация в этой модели обеспечивается за счет услуг по разработке и внедрению технологий, сопутствующих сервисов. Сокращение уровня прибыльности по сравнению с закрытой продуктовой моделью не приведет к снижению динамики развития, так как компенсируется вовлечением существенно более широкого круга компаний и специалистов из разных стран в процесс совершенствования технологий. Это перезапуск глобализации в новой парадигме: вместо исчерпавшего себя примитивного разделения труда между странами - совместное развитие и использование технологий.

Мы видим, что в разработке программного обеспечения (ПО) эти принципы уже широко используются. Считается, что баланс между проприетарным и свободно распространяемым ПО уже сложился, что доля свободного ПО не растет, но этот баланс подвижен. Экосистемы разработчиков свободного ПО держат в тонусе лидеров отрасли, не позволяя им задирать уровень ренты с контролируемых рынков и предоставляя заказчикам достойную альтернативу.

Порой открытые технологии разрушают рынок проприетарных решений на переделах одного уровня и одновременно создают предпосылки для олигополизации или монополизации на другом переделе. Так произошло, например, в 1980-е с внедрением открытой архитектуры компьютеров IBM-PC. Открытая технология позволила сформироваться огромной экосистеме разработчиков и производителей компьютеров и комплектующих. На этой волне поднялась другая монополия проприетарных решений стандарта Wintel - ОС Windows плюс х86-процессоры Intel.

Сейчас экосистема из 450 компаний - разработчиков процессоров, объединившихся вокруг британской ARM, разрушает монополию Intel на рынке процессорных архитектур. ARM предлагает более открытую лицензионную модель использования своих процессорных ядер и одновременно начинает доминировать на рынке IP, где доля лицензий ARM достигает уже 40%. А на другом фронте борьбы с доминированием Intel TSMC предлагает производственные ресурсы коллективного использования и делает передовые полупроводниковые технологии доступными широкому кругу разработчиков. Объединив, как и ARM, более 450 заказчиков, TSMC получает высокий и стабильный уровень загрузки.

С увеличением числа заказчиков набирают темп инвестиций и технологического развития и уже занимают более 60% мирового рынка фаундри - контрактные производители полупроводников. И в каждом случае формируется новое, более узкое разделение труда: вместо вертикально интегрированной закрытой модели Intel возникает разделение на разработчиков IP-ядер и блоков, фаундри и разработчиков микросхем, которые в новом разделении труда выступают интеграторами базовых технологий.

Для российских разработчиков и производителей микроэлектроники разрушение сложившихся рынков проприетарных решений, возможно, единственный шанс на преодоление разрыва в масштабе деятельности. Уступая зарубежным конкурентам на три порядка в масштабе, невозможно конкурировать по сложившимся правилам минимальной цены. Нужно предлагать другие правила - не продажи закрытых решений, а приглашение к участию во владении и развитии технологий.

Для государства такое изменение подхода - это возможность перейти от дотационного финансирования отрасли к инвестиционному, решить проблемы «ухода в песок» средств, выделяемых на НИОКР.

Государство последние года щедро финансирует НИОКР в области электроники, но текущие проекты не ставят целью создание открытых технологий, разрушение мировых монополий и олигополий, развитие больших экосистем. В текущем подходе, когда ставка делается на закрытые российские решения, замещающие закрытые зарубежные решения, заложено отставание и дотационная зависимость отрасли от бюджета. Такой подход не позволяет придать исследованиям и разработкам ускорение за счет вовлечения в проекты широкого круга как российских, так и зарубежных компаний, не позволяет включить интерес крупных частных инвесторов.

В закрытой модели финансирования государственных НИОКР оценку результативности и эффективности проектов дают сами себе заказчик и выбранный им исполнитель, причем оба они заинтересованы «прикрыть» друг друга. Формируется клановый характер отношений.

В открытой модели эту оценку дает сообщество разработчиков, использующих созданные технологии. Расширение соответствующих технологических экосистем становится основным и очень наглядным критерием оценки проектов, так как характеризует и выход на рынки, и привлечение частных инвестиций.

Формирование экосистем зависит не только от государства, но в первую очередь от готовности компаний работать в сообществе, совмещая конкуренцию и сотрудничество, опираясь на открытые, уважительные отношения. Построение таких отношений, возможно, самая главная технология, которой не хватает электронной отрасли России.

Р. Мак-Артур в 1955 г. предложил использовать уравнение Шеннона, в котором, если заменить p i , на (где n i - общее число особей вида i, N - общее число особей во всем биоценозе), получим формулу, описывающую информацию экосистемы .

где m - число групп.

Существуют два типа информации экосистемы : структурная и свободная. Структурная информация (скрытая информация) содержится в структуре экосистемы , ее количественный показатель не зависит от количества и содержания сведений, полученных о ней. Свободная информация - та часть информации экосистемы , которая содержится в сведениях о системе, полученных исследователем при анализе выборок, взятых из нее. Выборки, как правило, дают исследователю свободную информацию. Структурная информация скрыта во внутренней структуре экосистемы . См. также Информация , Уравнение Шеннона .

Экологический энциклопедический словарь. - Кишинев: Главная редакция Молдавской советской энциклопедии . И.И. Дедю . 1989 .


Смотреть что такое "ИНФОРМАЦИЯ ЭКОСИСТЕМЫ" в других словарях:

    Показатель разнообразия биологической системы. Например, популяции имеют сложные половую, возрастную, пространственно этологическую, размерную и другие структуры; экосистемы представлены большим количеством разнообразных популяций видов… … Экологический словарь

    Совокупность сведений для передачи заинтересованным учреждениям и ведомствам об экологическом состоянии территорий, о нарушениях его режима на массивах жилищной застройки, в зонах влияния промышленных предприятий, транспортных магистралей и в… … Словарь черезвычайных ситуаций

    - (от лат. informatio разъяснение, изложение), отражение и передача разнообразия в любых объектах и процессах живой и неживой природы. Одно из основных понятий кибернетики, введенное Н. Виннером (1984). По его мнению, от степени обладания нужной… … Экологический словарь

    ГОСТ Р 53794-2010: Информация о недрах геологическая. Термины и определения - Терминология ГОСТ Р 53794 2010: Информация о недрах геологическая. Термины и определения оригинал документа: аналитическая информация Часть геологической информации о недрах, содержащая сведения о строении, составе, свойствах горных пород, руд,… … Словарь-справочник терминов нормативно-технической документации

    У этого термина существуют и другие значения, см. Восток (значения). Озеро Восток Координаты: Координаты … Википедия

    Кризис - (Krisis) Содержание Содержание Финансовый кризис История Мировая история 1929 1933 годы время Великой депрессии Черный понедельник 1987 года. В 1994 1995 годах произошел Мексиканский кризис В 1997 году Азиатский кризис В 1998 году Российский… … Энциклопедия инвестора

    Функция организованных систем, возникших естественным (эволюционным) или искусственным (креационным) путем. Различают У. в биологических, социальных, экономических, политических, технических, кибернетических и др. системах. Наиболее общими… … Философская энциклопедия

    Природный парк «Донской» Дон. В … Википедия

    Промышленное производство - (Industrial production Index) Определение промышленного производства, тенденции развития производства Информация об определении промышленного производства, тенденции развития производства Содержание Содержание Обозначение и качество окружающей… … Энциклопедия инвестора

    В этой статье не хватает ссылок на источники информации. Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена. Вы можете … Википедия

Книги

  • Естествознание. 11 класс. Учебник. Базовый уровень. Вертикаль. ФГОС , Сивоглазов Владислав Иванович, Агафонова Инна Борисовна, Титов Сергей Алексеевич. Учебник соответствует Федеральному государственному образовательному стандарту среднего (полного) общего образования, рекомендован Министерством образования инауки РФ и включен в Федеральный…
Рассказать друзьям