Нахождение катетов по гипотенузе. Как найти гипотенузу, зная катет и угол

💖 Нравится? Поделись с друзьями ссылкой

В самом начале напомним, что треугольник – это многогранник, у которого имеются 3 угла. Как найти гипотенузу прямоугольного треугольника, если известны другие величины треугольника?

Инструкция

  1. Известны длины катетов. В данном случае, гипотенузу можно вычислить, применяя теорему Пифагора. Данная теорема звучит так: сумма квадратов катетов равна квадрату гипотенузы. Из этого следует, чтобы рассчитать длину гипотенузы, необходимо возвести в квадрат поочередно величину каждого катета. После чего полученные цифры сложить, а из общего результата уже извлечь квадратный корень.
  2. Как находить гипотенузу в треугольнике KFB, если известен катет (ВК) и прилежащий к нему угол? Известный угол обозначим α. Одно из свойств прямоугольного треугольника гласит следующее, отношение длины катета прямоугольного треугольника к длине гипотенузы равно косинусу угла, расположенного между гипотенузой и этим катетом. Записать это можно следующим образом: FB=BK*cos(α).
  3. Известен другой катет (KF) и этот же самый угол α, Теперь уже он будет противолежащим. Гипотенуза также можно найти, если применить те же самые свойства прямоугольного треугольника. Здесь мы получим, отношение длины катета прямоугольного треугольника к длине его гипотенузы равно синусу угла, противолежащего катету. Записываем: FB=KF*sin(α).
  4. Как найти гипотенузу треугольника, если около него описана окружность, у которой известен ее радиус. Из свойств окружности, которая описана вокруг прямоугольного треугольника известно, что у такой окружности центр совпадает с точкой гипотенузы, которая разделяет его пополам. Иными словами – радиус равен половине гипотенузы. А это значит, что два радиуса составляют гипотенузу: FB=2*R.

Зная свойства прямоугольного треугольника и теорему Пифагора, очень просто вычислить длину гипотенузы. Если вам все же сложно запомнить все свойства, тогда просто выучите готовые формулы, в которые очень просто подставить известные значения, чтобы рассчитать длину гипотенузы.

Как известно, геометрия – непростая наука, требующая особой аккуратности и точности в решении задач. Многие выражения и формулы, которые мы впоследствии используем в более сложных вычислениях, изложены в учебниках по математике 6-7 класса. Чтобы сделать процесс изучения тригонометрических функций более простым и приятным, в этой статье мы рассмотрим несколько коротких способ вычисления гипотенузы прямоугольного треугольника.

Как найти гипотенузу по катетам?

Вспомним немного теории: прямоугольным треугольником называют плоскую фигуру, у которой есть три угла. Один из них имеет величину 90º, а стороны называют катетами и гипотенузой. Та сторона, которая противолежит прямому углу, и есть гипотенуза, а остальные две – это прилежащие катеты. Главная игра сторон проявляется в теореме Пифагора, согласно которой гипотенуза равняется сумме квадратов катетов. Однако это лишь кажется запутанным, ведь на самом деле все гораздо проще.

Свойства геометрической фигуры

Перед тем, как найти гипотенузу треугольника, необходимо разобраться, какие особенности имеет данная фигура. Рассмотрим главные из них:

  1. В прямоугольном треугольнике оба острых угла в сумме будут равны 90º.
  2. Катет, лежащий против угла в 30º, будет равен ½ от величины гипотенузы.
  3. Если катет равен ½ от значения гипотенузы, тогда второй угол будет иметь такую же величину – 30º.

Найти гипотенузу в прямоугольном треугольнике можно несколькими способами. Самым простым решением является вычисление через катеты. Допустим, вам известны значения катетов сторон А и В. Тогда на выручку приходит теорема Пифагора, повествующая нам, что если поставить каждую величину катета в квадрат и просуммировать полученные данные, мы узнаем чему равна гипотенуза. Таким образом, нам необходимо просто извлечь значение квадратного корня:

Например, если катет А = 3 см, а катет В = 4 см, тогда вычисление будет иметь следующий вид:

Как найти гипотенузу через угол?

Еще одним способом, который поможет узнать, чему равна гипотенуза в прямоугольном треугольнике, является вычисление через заданный угол. Для этого нам потребуется вывести величину через формулу синуса. Допустим, нам известна величина катета (А) и значение противолежащего угла (α). Тогда все решение заключается в одной формуле: С=А/sin(α).

Например, если длина катета 40 см, а угол составляет 45°, тогда длину гипотенузы можно вывести следующим образом:

40/sin(45°) = 40/0,71 = 56,33.

Определить искомую величину можно также через косинус заданного угла. Допустим, нам известно значение одного катета (В) и острого прилежащего угла (α). Тогда для решения задачи понадобится одна формула: С=В/ cos(α).

К примеру, если длина катета имеет значение 50 см, а угол составляет 45°, тогда гипотенузу можно вычислить следующим образом:

50/cos(45°) = 50/0,71 = 80,42.

Таким образом, мы рассмотрели основные способы как узнать гипотенузу в треугольнике. В ходе решения задания важно сконцентрировать внимание на имеющихся данных, тогда найти неизвестную величину будет достаточно просто. Необходимо знать всего пару формул и процесс решения задач станет простым и приятным.

Теорема Пифагора является фундаментальной для каждой математики. Она устанавливает соотношение между сторонами прямоугольного треугольника. Теперь зафиксировано 367 доказательств этой теоремы.

Инструкция

1. Классическая школьная формулировка теоремы Пифагора звучит так: квадрат гипотенузы равен сумме квадратов катетов. Таким образом, дабы обнаружить гипотенузу прямоугольного треугольника по двум катетам, нужно поочередно построить в квадрат длины катетов, сложить их и извлечь квадратный корень из итога. В первоначальной своей формулировке теорема утверждала, что площадь квадрата, построенного на гипотенузе, равна сумме площадей 2-х квадратов, построенных на катетах. Впрочем современная алгебраическая формулировка не требует вводить представление площади.

2. Пускай, скажем, дан прямоугольный треугольник, катеты которого равны 7 см и 8 см. Тогда, согласно теореме Пифагора, квадрат гипотенузы равен 7?+8?=49+64=113 см?. Сама гипотенуза равна корню квадратному из числа 113. Получилось иррациональное число, которое идет в результат.

3. Если катеты треугольника равны 3 и 4, тогда гипотенуза равна?25=5. При извлечении квадратного корня получилось естественное число. Числа 3, 4, 5 составляют пифагорову тройку, так как они удовлетворяют соотношению x?+y?=z?, будучи все естественными. Другие примеры пифагоровой тройки: 6, 8, 10; 5, 12, 13; 15, 20, 25; 9, 40, 41.

4. В том случае если катеты равны между собой, тогда теорема Пифагора переходит в больше примитивное уравнение. Пускай, к примеру, оба катета равны числу A, а гипотенуза обозначена за C. Тогда C?=A?+A?, C?=2A?, C=A?2. В этом случае не надобно возводить в квадрат число A.

5. Теорема Пифагора – частный случай больше всеобщей теоремы косинусов, которая устанавливает соотношение между тремя сторонами треугольника для произвольного угла между какими-нибудь двумя из них.

Гипотенузой именуется сторона в прямоугольном треугольнике, которая находится наоборот угла в 90 градусов. Для того, дабы рассчитать его длину, довольно знать длину одного из катетов и величину одного из острых углов треугольника.

Инструкция

1. При знаменитом катете и остром угле прямоугольного треугольника, то размер гипотенузы может быть равен отношению катета к косинусу/синусу этого угла, если данный угол является ему противолежащим/прилежащим:h = C1(либо C2)/sin?;h = С1(либо С2)/cos?.Пример: Пускай дан прямоугольный треугольник ABC с гипотенузой AB и прямым углом C. Пускай угол B равен 60 градусам, а угол A 30 градусам Длина катета BC 8 см. Нужно обнаружить длину гипотенузы AB. Для этого дозволено воспользоваться любым из предложенных выше методов:AB = BC/cos60 = 8 см.AB = BC/sin30 = 8 см.

Гипотенуза – самая длинная сторона прямоугольного треугольника . Она расположена противоположно прямому углу. Метод нахождения гипотенузы прямоугольного треугольника зависит от того, какими начальными данными вы владеете.

Инструкция

1. Если вестимы катеты прямоугольного треугольника , то длина гипотенузы прямоугольного треугольника может быть обнаружена с поддержкой теоремы Пифагора – квадрат длины гипотенузы равен сумме квадратов длин катетов:с2 = а2 + b2, где а и b – длины катетов прямоугольного треугольника .

2. Если знаменит один из катетов и острый угол, то формула для нахождения гипотенузы будет зависеть от того, какой данный угол по отношению к знаменитому катету – прилежащий (расположенный вблизи катета) либо противолежащий (расположенный наоборот него.В случае прилежащего угла, гипотенуза равна отношению катета на косинус этого угла: с = a/cos?;E угол противолежащий, гипотенуза равна отношению катета на синус угла: с = a/sin?.

Видео по теме

Полезный совет
Прямоугольный треугольник, стороны которого соотносятся как 3:4:5, назван египетским треугольником, от того что именно такие фигуры энергично применялись архитекторами Старинного Египта. Он является также простейшим примером Героновых треугольников, в которых стороны и площадь представлены целыми числами.

«А нам говорят, что катет короче гипотенузы…» Эти строки из известной песни, которая звучала в художественном фильме «Приключения электроника» действительно верны по геометрии Евклида. Ведь катеты – это две стороны, образующие угол, градусная мера которого равно 90 градусам. А гипотенуза – самая длинная «натянутая» сторона, которая соединяет два перпендикулярных друг другу катета, и лежит противоположно прямому углу. Именно поэтому найти гипотенузу по катетам можно только в прямоугольном треугольнике, и если бы катет был длиннее гипотенузы, то такой треугольник бы не существовал.

Как найти гипотенузу по теореме Пифагора, если известны оба катета

Теорема гласит, что квадрат гипотенузы – это есть ни что иное, как сумма квадратов катетов: x^2+y^2=z^2, где:

  • х – первый катет;
  • y – второй катет;
  • z – гипотенуза.

Но необходимо найти просто гипотенузу, а не её квадрат. Для этого извлеките корень.

Алгоритм нахождения гипотенузы по двум известным катетам:

  • Обозначьте для себя, где катеты, а где гипотенуза.
  • Возведите первый катет в квадрат.
  • Возведите второй катет в квадрат.
  • Сложите полученные величины.
  • Извлеките корень из числа, полученного в пункте 4.

Как найти гипотенузу через синус, если известен катет и острый угол, лежащий против него

Отношение известного катета к острому углу, лежащему против него, равно величине гипотенузы: a/sin A = c. Это следствие из определения синуса:

Отношение противолежащего катета к гипотенузе: sin А = а/с, где:

  • a – первый катет;
  • A – острый угол, противоположный катету;
  • c- гипотенуза.

Алгоритм нахождения гипотенузы по теореме синусов:

  • Обозначьте для себя известный катет и противоположный ему угол.
  • Разделите катет на противоположный угол.
  • Получите гипотенузу.

Как найти гипотенузу через косинус, если известен катет и острый угол, прилежащий ему

Отношение известного катета к острому прилежащему углу равно величине гипотенузы a/cos B = c. Это следствие из определения косинуса: отношение прилежащего катета к гипотенузе: cos B= a/с, где:

  • a – второй катет;
  • B – острый угол, прилежащий второму катету;
  • с- гипотенуза.

Алгоритм нахождения гипотенузы по теореме косинусов:

  • Обозначьте для себя известный катет и прилежащий ему угол.
  • Разделите катет на прилежащий угол.
  • Получите гипотенузу.

Как найти гипотенузу с помощью «египетского треугольника»

«Египетский треугольник» – это тройка чисел, зная которые вы сможете сэкономить время для нахождения гипотенузы или даже другого неизвестного катета. Треугольник имеет такое название, так как в Египте некоторые числа символизировали Богов и являлись основой при строении пирамид и других различных сооружений.

  • Первая тройка чисел: 3-4-5. Катеты здесь равны 3 и 4. Тогда гипотенуза обязательно будет равняться 5. Проверка: (9+16=25).
  • Вторая тройка чисел: 5-12-13. Здесь также катеты равняются 5 и 12. Следовательно, гипотенуза будет равняться 13. Проверка: (25+144=169).

Такие числа помогают даже тогда, когда они разделены или умножены на какое-нибудь одно число. Если катеты равны 3 и 4, то гипотенуза будет равняться 5. Если умножить эти числа на 2, то и гипотенуза умножится на 2. Например, тройка чисел 6-8-10 также будет подходить под теорему Пифагора и можно не высчитывать гипотенузу, если вы запомните такие тройки чисел.



Таким образом, найти гипотенузу по известным катетам можно 4 способами. Самым оптимальным вариантом является теорема Пифагора, но также не помешало бы запомнить и тройки чисел, которые составляют “египетский треугольник”, ведь вы сможете сэкономить много времени, если вам попадутся такие значения.

Среди многочисленных расчетов, производимых для вычисления тех или иных величин различных есть нахождение гипотенузы треугольника. Напомним, что треугольником называется многогранник, имеющий три угла. Ниже будут приведены несколько способов расчета гипотенузы различных треугольников.

Первоначально посмотрим, как найти гипотенузу прямоугольного треугольника. Для тех, кто подзабыл, прямоугольным называется треугольник, имеющий угол 90 градусов. Сторона треугольника, расположенная на противоположной стороне прямого угла, называется гипотенузой. К тому же, она является наиболее длинной стороной треугольника. В зависимости от известных величин длина гипотенузы рассчитывается следующим образом:

  • Известны длины катетов. Гипотенуза в этом случае исчисляется, используя теорему Пифагора, которая звучит следующим образом: квадрат гипотенузы равен сумме квадратов катетов. Если рассмотреть прямоугольный треугольник BKF, где BK и KF катеты, а FB - гипотенуза, то FB2= BK2+ KF2. Из вышесказанного следует, что при расчете длины гипотенузы нужно возвести поочередно в квадрат каждую из величин катетов. Затем сложить поученные цифры и из результата извлечь квадратный корень.

Рассмотрим пример: Дан треугольник с прямым углом. Один катет равен 3 см, другой 4см. Найти гипотенузу. Решение выглядит следующим образом.

FB2= BK2+ KF2= (3см)2+(4см)2= 9см2+16см2=25 см2. Извлекаем и получаем FB=5см.

  • Известен катет (BK) и угол, прилежащий к нему, который образуется гипотенузой и этим катетом. Как найти гипотенузу треугольника? Обозначим известный угол α. Согласно свойству которое гласит, что отношение длины катета к длине гипотенузы равняется косинусу угла между этим катетом и гипотенузой. Рассматривая треугольник это можно записать так: FB= BK*cos(α).
  • Известен катет (KF) и тот же угол α, только теперь он уже будет противолежащим. Как найти гипотенузу в этом случае? Обратимся все к тем же свойствам прямоугольного треугольника и узнаем, что отношение длины катета к длине гипотенузы равняется синусу противолежащего катету угла. То есть FB= KF * sin (α).

Рассмотрим на примере. Дан все тот же прямоугольный треугольник BKF с гипотенузой FB. Пусть угол F равен 30 градусам, второй угол B соответствует 60 градусам. Еще известен катет BK, длина которого соответствует 8 см. Вычислить искомую величину можно так:

FB = BK /cos60 = 8 см.
FB = BK /sin30 = 8 см.

  • Известен (R), описанной около треугольника с прямым углом. Как найти гипотенузу при рассмотрении такой задачи? Из свойства окружности, описанной вокруг треугольника с прямым углом известно, что центр такой окружности совпадает с точкой гипотенузы, разделяющей ее пополам. Простыми словами - радиус соответствует половине гипотенузы. Отсюда гипотенуза равна двум радиусам. FB=2*R. Если же дана аналогичная задача, в которой известен не радиус, а медиана, то следует обратить внимание на свойство окружности, описанной вокруг треугольника с прямым углом, которое говорит, что радиус равен медиане, проведенной к гипотенузе. Используя все эти свойства, задача решается таким же способом.

Если стоит вопрос, как найти гипотенузу равнобедренного прямоугольного треугольника, то необходимо обратится все к той же теореме Пифагора. Но, в первую очередь вспомним, что равнобедренным треугольником, является треугольник, имеющий две одинаковые стороны. В случае с прямоугольным треугольником одинаковыми сторонами являются катеты. Имеем FB2= BK2+ KF2, но, так как BK= KF имеем следующее: FB2=2 BK2, FB= BK√2

Как видите, зная теорему Пифагора и свойства прямоугольного треугольника, решить задачи, при которых необходимо вычислить длину гипотенузы, очень просто. Если же все свойства запомнить сложно, выучите готовые формулы, подставив в которые известные значения можно будет рассчитать искомую длину гипотенузы.

Рассказать друзьям