Что представляют собой электромагнитные колебания. Электрические колебания и электромагнитные волны

💖 Нравится? Поделись с друзьями ссылкой

В электрических цепях, так же как и в механических системах, таких как груз на пружине или маятник, могут возникать свободные колебания .

Электромагнитными колебаниями называют периодические взаимосвязанные изменения заряда, силы тока и напряжения.

Свободными колебаниями называют такие, которые совершаются без внешнего воздействия за счет первоначально накопленной энергии.

Вынужденными называются колебания в цепи под действием внешней периодической электродвижущей силы

Свободные электромагнитные колебания – это периодически повторяющиеся изменения электромагнитных величин (q – электрический заряд, I – сила тока, U – разность потенциалов), происходящие без потребления энергии от внешних источников.

Простейшей электрической системой, способной совершать свободные колебания, является последовательный RLC-контур или колебательный контур .

Колебательный контур – это система, состоящая из последовательно соединенных конденсатора емкости C , катушки индуктивности L и проводника с сопротивлением R

Рассмотрим закрытый колебательный контур, состоящий из индуктивности L и емкости С.

Чтобы возбудить колебания в этом контуре, необходимо сообщить конденсатору некоторый заряд от источника ε . Когда ключ K находится в положении 1, конденсатор заряжается до напряжения. После переключения ключа в положение 2 начинается процесс разрядки конденсатора через резистор R и катушку индуктивности L . При определенных условиях этот процесс может иметь колебательный характер

Свободные электромагнитные колебания можно наблюдать на экране осциллографа.

Как видно из графика колебаний, полученного на осцилографе, свободные электромагнитные колебания являются затухающими , т.е.их амплитуда уменьшается с течением времени. Это происходит потому, что часть электрической энергии на активном сопротивлении R превращается во внутреннюю энерги. проводника (проводник нагревается при прохождении по нему электрического тока).

Рассмотрим, как происходят колебания в колебательном контуре и какие изменения энергии при этом происходят. Рассмотрим сначала случай, когда в контуре нет потерь электромагнитной энергии (R = 0).

Если зарядить конденсатор до напряжения U 0 то в начальный момент времени t 1 =0 на обкладках конденсатора установятся амплитудные значения напряжения U 0 и заряда q 0 = CU 0 .

Полная энергия W системы равна энергии электрического поля W эл:

Если цепь замыкают, то начинает течь ток. В контуре возникает э.д.с. самоиндукции

Вследствие самоиндукции в катушке конденсатор разряжается не мгновенно, а постепенно (так как, согламно правилу Ленца, возникающий индукционный ток своим магнитным полем противодействует тому изменению магнитного потока, которым он вызван. Т.е. магнитное поле индукционного тока не дает мгновенно увеличиться магнитному потоку тока в контуре). При этом ток увеличивается постепенно, достигая своего максимального значения I 0 в момент времени t 2 =T/4, а заряд на конденсаторе становится равным нулю.

По мере разрядки конденсатора энергия электрического поля уменьшается, но одновременно возрастает энергия магнитного поля. Полная энергия контура после разрядки конденсатора равна энергии магнитного поля W м:

В следующий момент времени ток течет в том же направлении, уменьшаясь до нуля, что вызывает перезарядку конденсатора. Ток не прекращается мгновенно после разрядки конденсатора вследствии самоиндукции (теперь магнитное поле индукционного тока не дает магнитному потоку тока в контуре мгновенно уменьшиться). В момент времени t 3 =T/2 заряд конденсатора опять максимален и равен первоначальному заряду q = q 0 , напряжение тоже равно первоначальному U = U 0 , а ток в контуре равен нулю I = 0.

Затем конденсатор снова разряжается, ток через индуктивность течёт в обратном направлении. Через промежуток времени Т система приходит в исходное состояние. Завершается полное колебание, процесс повторяется.

График изменения заряда и силы тока при свободных электромагнитных колебаниях в контуре показывает, что колебания силы тока отстают от колебаний заряда на π/2.

В любой момент времени полная энергия:

При свободных колебаниях происходит периодическое превращение электрической энергии W э, запасенной в конденсаторе, в магнитную энергию W м катушки и наоборот. Если в колебательном контуре нет потерь энергии, то полная электромагнитная энергия системы остается постоянной.

Свободные электрические колебания аналогичны механическим колебаниям. На рисунке приведены графики изменения заряда q (t ) конденсатора и смещения x (t ) груза от положения равновесия, а также графики тока I (t ) и скорости груза υ(t ) за один период колебаний.

В отсутствие затухания свободные колебания в электрическом контуре являются гармоническими , то есть происходят по закону

q (t ) = q 0 cos(ωt + φ 0)

Параметры L и C колебательного контура определяют только собственную частоту свободных колебаний и период колебаний - формула Томпсона

Амплитуда q 0 и начальная фаза φ 0 определяются начальными условиями , то есть тем способом, с помощью которого система была выведена из состояния равновесия.

Для колебаний заряда, напряжения и силы тока получаются формулы:

Для конденсатора:

q (t ) = q 0 cosω 0 t

U (t ) = U 0 cosω 0 t

Для катушки индуктивности:

i (t ) = I 0 cos(ω 0 t + π/2)

U (t ) = U 0 cos(ω 0 t + π)

Вспомомним основные характеристики колебательного движения :

q 0, U 0 , I 0 - амплитуда – модуль наибольшего значения колеблющейся величины

Т - период – минимальный промежуток времени через который процесс полностью повторяется

ν - Частота – число колебаний в единицу времени

ω - Циклическая частота – число колебаний за 2п секунд

φ - фаза колебаний - величина стоящая под знаком косинуса (синуса) и характеризующая состояние системы в любой момент времени.

1. Свободные электромагнитные колебания.

2. Апериодический разряд конденсатора. Постоянная времени. Зарядка конденсатора.

3. Электрический импульс и импульсный ток.

4. Импульсная электротерапия.

5. Основные понятия и формулы.

6. Задачи.

14.1. Свободные электромагнитные колебания

В физике колебаниями называют процессы, отличающиеся той или иной степенью повторяемости.

Электромагнитные колебания - это повторяющиеся изменения электрических и магнитных величин: заряда, тока, напряжения, а также электрического и магнитного полей.

Такие колебания возникают, например, в замкнутой цепи, содержащей конденсатор и катушку индуктивности (колебательный контур).

Незатухающие колебания

Рассмотрим идеальный колебательный контур, который не обладает активным сопротивлением (рис. 14.1).

Если зарядить конденсатор от сети постоянного напряжения (U c), установив ключ К в положение «1», а затем перевести ключ К в положение «2», то конденсатор начнет разряжаться через катушку индуктивности, и в цепи

Рис. 14.1. Идеальный колебательный контур (С - емкость конденсатора, L - индуктивность катушки)

появится нарастающий ток i (силу переменного тока обозначают строчной буквой i).

При этом в катушке возникает э.д.с. самоиндукции Е = -L*di/dt (см. формулу 10.15). В идеальном контуре (R = 0) э.д.с. равна напряжению на обкладках конденсатора U = q/C (см. формулу 10.16). Приравняв Е и U, получим

Период свободных колебаний определяется формулой Томпсона: T = 2π/ω 0 = 2π√LC . (14.6)

Рис. 14.2. Зависимость заряда, напряжения и тока от времени в идеальном колебательном контуре (незатухающие колебания)

Энергия электрического поля конденсатора W эл и энергия магнитного поля катушки W м периодически изменяются со временем:

Полная энергия (W) электромагнитных колебаний складывается из двух этих энергий. Поскольку в идеальном контуре отсутствуют потери, связанные с выделением теплоты, полная энергия свободных колебаний сохраняется:

Затухающие колебания

В обычных условиях все проводники обладают активным сопротивлением. Поэтому свободные колебания в реальном контуре затухают. На рисунке 14.3 активное сопротивление проводников изображает резистор R.

При наличии активного сопротивления э.д.с. самоиндукции равна сумме напряжений на резисторе и обкладках конденсатора:

После переноса всех слагаемых в левую часть и деления на индуктивность

Рис. 14.3. Реальный колебательный контур

катушки (L) получим дифференциальное уравнение свободных колебаний в реальном контуре:

График таких колебаний представлен на рис. 14.4.

Характеристикой затухания является логарифмический декремент затухания λ = βТ з = 2πβ/ω з, где Т з и ω з - период и частота затухающих колебаний соответственно.

Рис. 14.4. Зависимость заряда от времени в реальном колебательном контуре (затухающие колебания)

14.2. Апериодический разряд конденсатора. Постоянная времени. Зарядка конденсатора

Апериодические процессы возникают и в более простых случаях. Если, например, заряженный конденсатор соединить с резистором (рис. 14.5) или незаряженный конденсатор подключить к источнику постоянного напряжения (рис. 14.6), то после замыкания ключей колебаний не возникнет.

Разрядка конденсатора с начальным зарядом между пластинами q max происходит по экспоненциальному закону:

где τ = RC называется постоянной времени.

По такому же закону изменяется и напряжение на обкладках конденсатора:

Рис. 14.5. Разряд конденсатора через резистор

Рис. 14.6. Зарядка конденсатора от сети постоянного тока с внутренним сопротивлением r

При зарядке от сети постоянного тока напряжение на обкладках конденсатора нарастает по закону

где τ = rC также называется постоянной времени (r - внутреннее сопротивление сети).

14.3. Электрический импульс и импульсный ток

Электрический импульс - кратковременное изменение электрического напряжения или силы тока на фоне некоторого постоянного значения.

Импульсы подразделяются на две группы:

1) видеоимпульсы - электрические импульсы постоянного тока или напряжения;

2) радиоимпульсы - модулированные электромагнитные колебания.

Видеоимпульсы различной формы и пример радиоимпульса показаны на рис. 14.7.

Рис. 14.7. Электрические импульсы

В физиологии термином «электрический импульс» обозначают именно видеоимпульсы, характеристики которых имеют существенное значение. Для уменьшения возможной погрешности при измерениях условились выделять моменты времени, при которых параметры имеют значение 0,1U max и 0,9U max (0,1I max и 0,9I max). Через эти моменты времени выражают характеристики импульсов.

Рис.14.8. Характеристики импульса (а) и импульсного тока (б)

Импульсный ток - периодическая последовательность одинаковых импульсов.

Характеристики отдельного импульса и импульсного тока указаны на рис. 14.8.

На рисунке указаны:

14.4. Импульсная электротерапия

Электросонтерапия - метод лечебного воздействия на структуры головного мозга. Для этой процедуры применяют прямоугольные

импульсы с частотой 5-160 имп/с и длительностью 0,2-0,5 мс. Сила импульсного тока составляет 1-8 мА.

Транскраниальная электроанальгезия - метод лечебного воздействия на кожные покровы головы импульсными токами, вызывающими обезболивание или снижение интенсивности болевых ощущений. Режимы воздействия показаны на рис. 14.9.

Рис. 14.9. Основные виды импульсных токов, используемых при транскраниальной электроанальгезии:

а) прямоугольные импульсы напряжением до 10 В, частотой 60-100 имп/с, длительностью 3,5-4 мс, следующие пачками по 20-50 импульсов;

б) прямоугольные импульсы постоянной (б) и переменной (в) скважности продолжительностью 0,15-0,5 мс, напряжением до 20 В, следующие с частотой

Выбор параметров (частоты, длительности, скважности, амплитуды) осуществляется индивидуально для каждого больного.

Диадинамотерапия использует полусинусоидальные импульсы

(рис. 14.10).

Токи Бернара представляют собой диадинамические токи - импульсы с задним фронтом, имеющим форму экспоненты, частота этих токов 50-100 Гц. Возбудимые ткани организма быстро адаптируются к таким токам.

Электростимуляция - метод лечебного применения импульсных токов для восстановления деятельности органов и тканей, утративших нормальную функцию. Лечебный эффект обусловлен тем физиологическим действием, которое оказывают на ткани организ-

Рис. 14.10. Основные виды диадинамических токов:

а) однополупериодный непрерывный ток с частотой 50 Гц;

б) двухполупериодный непрерывный ток с частотой 100 Гц;

в) однополупериодный ритмический ток - прерывистый однополупериодный ток, посылки которого чередуются с паузами равной длительности

г) ток, модулированный разными по длительности периодами

ма импульсы с высокой крутизной фронта. При этом происходит быстрый сдвиг ионов из установившегося положения, оказывающий на легковозбудимые ткани (нервную, мышечную) значительное раздражающее действие. Это раздражающее действие пропорционально скорости изменения силы тока, т.е. di/dt.

Основные виды импульсных токов, используемых в этом методе, показаны на рис. 14.11.

Рис. 14.11. Основные виды импульсных токов, используемых для электростимуляции:

а) постоянный ток с прерыванием;

б) импульсный ток прямоугольной формы;

в) импульсный ток экспоненциальной формы;

г) импульсный ток треугольной остроконечной формы

На раздражающее действие импульсного тока особенно сильно влияет крутизна нарастания переднего фронта.

Электропунктура - лечебное воздействие импульсных и переменных токов на биологически активные точки (БАТ). По современным представлениям такие точки являются морфофункционально обособленными участками тканей, расположенными в подкожной жировой клетчатке. Они имеют повышенную электропроводность по отношению к окружающим их участкам кожи. На этом свойстве основано действие приборов для поиска БАТ и воздействия на них (рис. 14.12).

Рис. 14.12. Прибор для электропунктуры

Рабочее напряжение измерительных приборов не превышает 2 В.

Измерения проводятся следующим образом: нейтральный электрод пациент держит в руке, а оператор прикладывает к исследуемой БАТ измерительный электрод-щуп малой площади (точечные электроды). Экспериментально показано, что сила тока, протекающего в измерительной цепи, зависит от давления электрода-щупа на поверхность кожи (рис. 14.13).

Поэтому всегда имеется разброс в измеряемой величине. Кроме того, упругость, толщина, влажность кожи на различных участках тела и у различных людей разная, поэтому нельзя ввести единую норму. Следует особо отметить, что механизмы электрического раздражения

Рис. 14.13. Зависимость силы тока от давления щупа на кожу

БАТ нуждаются в строгом научном обосновании. Необходимо корректное сравнение с концепциями нейрофизиологии.

14.5. Основные понятия и формулы

Окончание таблицы

14.6. Задачи

1. В качестве датчика медико-биологической информации используют конденсаторы с изменяющимся расстоянием между пластинами. Найти отношение изменения частоты к частоте собственных колебаний в контуре, включающем такой конденсатор, если расстояние между пластинами уменьшилось на 1 мм. Первоначальное расстояние равно 1 см.

2. Колебательный контур аппарата для терапевтической диатермии состоит из катушки индуктивности и конденсатора емкостью

С = 30 Ф. Определить индуктивность катушки, если частота генератора 1 МГц.

3. Конденсатор емкостью С = 25 пФ, заряженный до разности потенциалов U = 20 В, разряжается через реальную катушку сопротивлением R = 10 Ом и индуктивностью L = 4 мкГн. Найти логарифмический декремент затухания λ.

Решение

Система представляет собой реальный колебательный контур. Коэффициент затухания β = R/(2L) = 20/(4х10 -6) = 5х10 6 1/с. Логарифмический декремент затухания

4. Фибрилляция желудочков сердца заключается в их хаотическом сокращении. Большой кратковременный ток, пропущенный через область сердца, возбуждает клетки миокарда, и может восстановиться нормальный ритм сокращения желудочков. Соответствующий аппарат называется дефибриллятором. Он представляет собой конденсатор, который заряжается до значительного напряжения и затем разряжается через электроды, приложенные к телу больного в области сердца. Найти значение максимального тока при действии дефибриллятора, если он был заряжен до напряжения U = 5 кВ, а сопротивление участка тела человека равно 500 Ом.

Решение

I = U/R = 5000/500 = 10 А. Ответ: I = 10 А.

Электрическая цепь, состоящая из катушки индуктивности и конденсатора (см. рисунок), называется колебательным контуром. В этой цепи могут происходить своеобразные электрические колебания. Пусть, например, в начальный момент времени мы заряжаем пластины конденсатора положительным и отрицательным зарядами, а затем разрешим зарядам двигаться. Если бы катушка отсутствовала, конденсатор начал бы разряжаться, в цепи на короткое время возник электрический ток, и заряды пропали бы. Здесь же происходит следующее. Сначала благодаря самоиндукции катушка препятствует увеличению тока, а затем, когда ток начинает убывать, препятствует его уменьшению, т.е. поддерживает ток. В результате ЭДС самоиндукции заряжает конденсатор с обратной полярностью: та пластина, которая изначально была заряжена положительно, приобретает отрицательный заряд, вторая - положительный. Если при этом не происходит потерь электрической энергии (в случае малого сопротивления элементов контура), то величина этих зарядов будет такая же, как величина первоначальных зарядов пластин конденсатора. В дальнейшем движение процесс перемещения зарядов будет повторяться. Таким образом, движение зарядов в контуре представляет собой колебательный процесс.

Для решения задач ЕГЭ, посвященных электромагнитным колебаниям, нужно запомнить ряд фактов и формул, касающихся колебательного контура. Во-первых, нужно знать формулу для периода колебаний в контуре. Во-вторых, уметь применять к колебательному контуру закон сохранения энергии. И, наконец (хотя такие задачи встречаются редко), уметь использовать зависимости силы тока через катушку и напряжения на конденсаторе от времени

Период электромагнитных колебаний в колебательном контуре определяется соотношением:

где и - заряд на конденсаторе и сила тока в катушке в этот момент времени, и - емкость конденсатора и индуктивность катушки. Если электрическое сопротивление элементов контура мало, то электрическая энергия контура (24.2) остается практически неизменной, несмотря на то, что заряд конденсатора и ток в катушке изменяются с течением времени. Из формулы (24.4) следует, что при электрических колебаниях в контуре происходят превращения энергии: в те моменты времени, когда ток в катушке равен нулю, вся энергия контура сводится к энергии конденсатора. В те моменты времени, когда равен нулю заряд конденсатора, энергия контура сводится к энергии магнитного поля в катушке. Очевидно, в эти моменты времени заряд конденсатора или ток в катушке достигают своих максимальных (амплитудных) значений.

При электромагнитных колебаниях в контуре заряд конденсатора изменяется с течением времени по гармоническому закону:

стандартной для любых гармонических колебаний. Поскольку сила тока в катушке представляет собой производную заряда конденсатора по времени, из формулы (24.4) можно найти зависимость силы тока в катушке от времени

В ЕГЭ по физике часто предлагаются задачи на электромагнитные волны. Необходимый для решения этих задач минимум знаний включает в себя понимание основных свойств электромагнитной волны и знание шкалы электромагнитных волн. Сформулируем кратко эти факты и принципы.

Согласно законам электромагнитного поля переменное магнитное поле порождает поле электрическое, переменное электрическое поле порождает поле магнитное. Поэтому если одно из полей (например, электрическое) начнет меняться, возникнет второе поле (магнитное), которое затем снова порождает первое (электрическое), затем снова второе (магнитное) и т.д. Процесс взаимного превращения друг в друга электрического и магнитного полей, который может распространяться в пространстве, называется электромагнитной волной. Опыт показывает, что направления, в которых колеблются векторы напряженности электрического и индукции магнитного поля в электромагнитной волне перпендикулярны направлению ее распространения. Это означает, что электромагнитные волны являются поперечными. В теории электромагнитного поля Максвелла доказывается, что электромагнитная волна создается (излучается) электрическими зарядами при их движении с ускорением. В частности, источником электромагнитной волны является колебательный контур.

Длина электромагнитной волны , ее частота (или период ) и скорость распространения связаны соотношением, которое справедливо для любой волны (см. также формулу (11.6)):

Электромагнитные волны в вакууме распространяются со скоростью = 3 10 8 м/с, в среде скорость электромагнитных волн меньше, чем в вакууме, причем эта скорость зависит от частоты волны. Такое явление называется дисперсией волн. Электромагнитной волне присущи все свойства волн, распространяющихся в упругих средах: интерференция, дифракция, для нее справедлив принцип Гюйгенса. Единственное, что отличает электромагнитную волну, это то, что для ее распространения не нужна среда - электромагнитная волна может распространяться и в вакууме.

В природе наблюдаются электромагнитные волны с сильно отличающимися друг от друга частотами, и обладающие благодаря этому существенно различными свойствами (несмотря на одинаковую физическую природу). Классификация свойств электромагнитных волн в зависимости от их частоты (или длины волны) называется шкалой электромагнитных волн. Дадим краткий обзор этой шкалы.

Электромагнитные волны с частотой меньшей 10 5 Гц (т.е. с длиной волны, большей нескольких километров) называются низкочастотными электромагнитными волнами. Излучают волны такого диапазона большинство бытовых электрических приборов.

Волны с частотой от 10 5 до 10 12 Гц называются радиоволнами. Этим волнам отвечают длины волн в вакууме от нескольких километров до нескольких миллиметров. Эти волны применяются для радиосвязи, телевидения, радиолокации, сотовых телефонов. Источниками излучения таких волн являются заряженные частицы, движущиеся в электромагнитных полях. Радиоволны излучаются также свободными электронами металла, которые совершают колебания в колебательном контуре.

Область шкалы электромагнитных волн с частотами, лежащими в интервале 10 12 - 4,3 10 14 Гц (и длинами волн от нескольких миллиметров до 760 нм) называется инфракрасным излучением (или инфракрасными лучами). Источником такого излучения служат молекулы нагретого вещества. Человек излучает инфракрасные волны с длиной волны 5 - 10 мкм.

Электромагнитное излучение в интервале частот 4,3 10 14 - 7,7 10 14 Гц (или длин волн 760 - 390 нм) воспринимается человеческим глазом как свет и называется видимым светом. Волны различных частот внутри этого диапазона воспринимаются глазом, как имеющие различный цвет. Волна с самой маленькой частотой из видимого диапазона 4,3 10 14 воспринимается как красная, с самой большой частотой внутри видимого диапазона 7,7 10 14 Гц - как фиолетовая. Видимый свет излучается при переходе электронов в атомах, молекулами твердых тел, нагретых до 1000 °С и более.

Волны с частотой 7,7 10 14 - 10 17 Гц (длина волны от 390 до 1 нм) принято называть ультрафиолетовым излучением. Ультрафиолетовое излучение имеет выраженное биологическое действие: оно способно убивать ряд микроорганизмов, способно вызвать усиление пигментации человеческой кожи (загар), при избыточном облучении в отдельных случаях может способствовать развитию онкологических заболеваний (рак кожи). Ультрафиолетовые лучи содержатся в излучении Солнца, в лабораториях создаются специальными газоразрядными (кварцевыми) лампами.

За областью ультрафиолетового излучения лежит область рентгеновских лучей (частота 10 17 - 10 19 Гц, длина волны от 1 до 0,01 нм). Эти волны излучаются при торможении в веществе заряженных частиц, разогнанных напряжением 1000 В и более. Обладают способностью проходить сквозь толстые слои вещества, непрозрачного для видимого света или ультрафиолетового излучения. Благодаря этому свойству рентгеновские лучи широко используются в медицине для диагностики переломов костей и ряда заболеваний. Рентгеновские лучи оказывают губительное действие на биологические ткани. Благодаря этому свойству их можно использовать для лечения онкологических заболеваний, хотя при избыточном облучении они смертельно опасны для человека, вызывая целый ряд нарушений в организме. Из-за очень малой длины волны волновые свойства рентгеновского излучения (интерференцию и дифракцию) можно обнаружить только на структурах, сравнимых с размерами атомов.

Гамма-излучением (-излучением) называют электромагнитные волны с частотой, большей, чем 10 20 Гц (или длиной волны, меньшей 0,01 нм). Возникают такие волны в ядерных процессах. Особенностью -излучения является его ярко выраженные корпускулярные свойства (т.е. это излучение ведет себя как поток частиц). Поэтому о -излучении часто говорят как о потоке -частиц.

В задаче 24.1.1 для установления соответствия между единицами измерений используем формулу (24.1), из которой следует, что период колебаний в контуре с конденсатором емкостью 1 Ф и индуктивностью 1 Гн равен секунд (ответ 1 ).

Из графика, данного в задаче 24.1.2 , заключаем, что период электромагнитных колебаний в контуре составляет 4 мс (ответ 3 ).

По формуле (24.1) находим период колебаний в контуре, данном в задаче 24.1.3 :
(ответ 4 ). Отметим, что согласно шкале электромагнитных волн такой контур излучает волны длинноволнового радиодиапазона.

Периодом колебания называется время одного полного колебания. Это значит, что если в начальный момент времени конденсатор заряжен максимальным зарядом (задача 24.1.4 ), то через половину периода конденсатор будет также заряжен максимальным зарядом, но с обратной полярностью (та пластина, которая изначально была заряжена положительно, будет заряжена отрицательно). А максимальный в контуре ток будет достигаться между этими двумя моментами, т.е. через четверть периода (ответ 2 ).

Если увеличить индуктивность катушки в четыре раза (задача 24.1.5 ), то согласно формуле (24.1) период колебаний в контуре возрастет в два раза, а частота уменьшится в два раза (ответ 2 ).

Согласно формуле (24.1) при увеличении емкости конденсатора в четыре раза (задача 24.1.6 ) период колебаний в контуре увеличивается в два раза (ответ 1 ).

При замыкании ключа (задача 24.1.7 ) в контуре вместо одного конденсатора будут работать два таких же конденсатора, соединенных параллельно (см. рисунок). А поскольку при параллельном соединении конденсаторов их емкости складываются, то замыкание ключа приводит к двукратному увеличению емкости контура. Поэтому из формулы (24.1) заключаем, что период колебаний увеличивается в раз (ответ 3 ).

Пусть заряд на конденсаторе совершает колебания с циклической частотой (задача 24.1.8 ). Тогда согласно формулам (24.3)-(24.5) с той же частотой будет совершать колебаний ток в катушке. Это значит, что зависимость тока от времени может быть представлена в виде . Отсюда находим зависимость энергии магнитного поля катушки от времени

Из этой формулы следует, что энергия магнитного поля в катушке совершает колебания с удвоенной частотой, и, значит, с периодом, вдвое меньшим периода колебания заряда и тока (ответ 1 ).

В задаче 24.1.9 используем закон сохранения энергии для колебательного контура. Из формулы (24.2) следует, что для амплитудных значений напряжения на конденсаторе и тока в катушке справедливо соотношение

где и - амплитудные значения заряда конденсатора и тока в катушке. Из этой формулы с использованием соотношения (24.1) для периода колебаний в контуре находим амплитудное значение тока

ответ 3 .

Радиоволны - электромагнитные волны с определенными частотами. Поэтому скорость их распространения в вакууме равна скорости распространения любых электромагнитных волн, и в частности, рентгеновских. Эта скорость - скорость света (задача 24.2.1 - ответ 1 ).

Как указывалось ранее, заряженные частицы излучают электромагнитные волны при движении с ускорением. Поэтому волна не излучается только при равномерном и прямолинейном движении (задача 24.2.2 - ответ 1 ).

Электромагнитная волна - это особым образом изменяющиеся в пространстве и времени и поддерживающие друг друга электрическое и магнитное поля. Поэтому правильный ответ в задаче 24.2.3 - 2 .

Из данного в условии задачи 24.2.4 графика следует, что период данной волны - = 4 мкс. Поэтому из формулы (24.6) получаем м (ответ 1 ).

В задаче 24.2.5 по формуле (24.6) находим

(ответ 4 ).

С антенной приемника электромагнитных волн связан колебательный контур. Электрическое поле волны действует на свободные электроны в контуре и заставляет их совершать колебания. Если частота волны совпадает с собственной частотой электромагнитных колебаний, амплитуда колебаний в контуре возрастает (резонанс) и может быть зарегистрирована. Поэтому для приема электромагнитной волны частота собственных колебаний в контуре должна быть близка к частоте этой волны (контур должен быть настроен на частоту волны). Поэтому если контур нужно перенастроить с волны длиной 100 м на волну длиной 25 м (задача 24.2.6 ), собственная частота электромагнитных колебаний в контуре должна быть увеличена в 4 раза. Для этого согласно формулам (24.1), (24.4) емкость конденсатора следует уменьшить в 16 раз (ответ 4 ).

Согласно шкале электромагнитных волн (см. введение к настоящей главе), максимальной длиной из перечисленных в условии задачи 24.2.7 электромагнитных волн обладает излучение антенны радиопередатчика (ответ 4 ).

Среди перечисленных в задаче 24.2.8 электромагнитных волн максимальной частотой обладает рентгеновское излучение (ответ 2 ).

Электромагнитная волна является поперечной. Это значит, что векторы напряженности электрического поля и индукции магнитного поля в волне в любой момент времени направлены перпендикулярно направлению распространения волны. Поэтому при распространении волны в направлении оси (задача 24.2.9 ), вектор напряженности электрического поля направлен перпендикулярно этой оси. Следовательно, обязательно равна нулю его проекция на ось = 0 (ответ 3 ).

Скорость распространения электромагнитной волны - есть индивидуальная характеристика каждой среды. Поэтому при переходе электромагнитной волны из одной среду в другую (или из вакуума в среду) скорость электромагнитной волны изменяется. А что можно сказать о двух других параметрах волны, входящих в формулу (24.6), - длине волны и частоте . Будут ли они изменяться при переходе волны из одной среды в другую (задача 24.2.10 )? Очевидно, что частота волны не изменяется при переходе из одной среды в другую. Действительно, волна это колебательный процесс, в котором переменное электромагнитное поле в одной среде создает и поддерживает поле в другой среде благодаря именно этим изменениям. Поэтому периоды этих периодических процессов (а значит и частоты) в одной и другой среде должны совпадать (ответ 3 ). А поскольку скорость волны в разных средах разная, то из проведенных рассуждений и формулы (24.6) следует, что длина волны при ее переходе из одной среды в другую - изменяется.

Существуют разные виды колебаний в физике, характеризующиеся определенными параметрами. Рассмотрим их основные отличия, классификацию по разным факторам.

Основные определения

Под колебанием подразумевают процесс, в котором через равные промежутки времени основные характеристики движения имеют одинаковые значения.

Периодическими называют такие колебания, при которых значения основных величин повторяются через одинаковые промежутки времени (период колебаний).

Разновидности колебательных процессов

Рассмотрим основные виды колебаний, существующие в фундаментальной физике.

Свободными называют колебания, которые возникают в системе, не подвергающейся внешним переменным воздействиям после начального толчка.

В качестве примера свободных колебаний является математический маятник.

Те виды механических колебаний, которые возникают в системе под действием внешней переменной силы.

Особенности классификации

По физической природе выделяют следующие виды колебательных движений:

  • механические;
  • тепловые;
  • электромагнитные;
  • смешанные.

По варианту взаимодействия с окружающей средой

Виды колебаний по взаимодействию с окружающей средой выделяют несколько групп.

Вынужденные колебания появляются в системе при действии внешнего периодического действия. В качестве примеров такого вида колебаний можно рассмотреть движение рук, листья на деревьях.

Для вынужденных гармонических колебаний возможно появление резонанса, при котором при равных значениях частоты внешнего воздействия и осциллятора при резком возрастании амплитуды.

Собственные это колебания в системе под воздействием внутренних сил после того, когда она будет выведена из равновесного состояния. Простейшим вариантом свободных колебаний является движение груза, который подвешен на нити, либо прикреплен к пружине.

Автоколебаниями называют виды, при которых у системы есть определенный запас потенциальной энергии, идущей на совершение колебаний. Отличительной чертой их является тот факт, что амплитуда характеризуется свойствами самой системы, а не первоначальными условиями.

Для случайных колебаний внешняя нагрузка имеет случайное значение.

Основные параметры колебательных движений

Все виды колебаний имеют определенные характеристики, о которых следует упомянуть отдельно.

Амплитудой называют максимальное отклонение от положения равновесия отклонение колеблющейся величины, измеряется она в метрах.

Период является время одного полного колебания, через который повторяются характеристики системы, вычисляется в секундах.

Частота определяется количеством колебаний за единицу времени, она обратно пропорциональна периоду колебаний.

Фаза колебаний характеризует состояние системы.

Характеристика гармонических колебаний

Такие виды колебаний происходят по закону косинуса или синуса. Фурье удалось установить, что всякое периодическое колебание можно представить в виде суммы гармонических изменений путем разложения определенной функции в

В качестве примера можно рассмотреть маятник, имеющий определенный период и циклическую частоту.

Чем характеризуются такие виды колебаний? Физика считает идеализированной системой, которая состоит из материальной точки, которая подвешена на невесомой нерастяжимой нити, колеблется под воздействием силы тяжести.

Такие виды колебаний обладают определенной величиной энергии, они распространены в природе и технике.

При продолжительном колебательном движении происходит изменение координаты его центра масс, а при переменном токе меняется значение тока и напряжения в цепи.

Выделяют разные виды гармонических колебаний по физической природе: электромагнитные, механические и др.

В качестве вынужденных колебаний выступает тряска транспортного средства, которое передвигается по неровной дороге.

Основные отличия между вынужденными и свободными колебаниями

Эти виды электромагнитных колебаний отличаются по физическим характеристикам. Наличие сопротивления среды и силы трения приводят к затуханию свободных колебаний. В случае вынужденных колебаний потери энергии компенсируются ее дополнительным поступлением от внешнего источника.

Период пружинного маятника связывает массу тела и жесткость пружины. В случае математического маятника он зависит от длины нити.

При известном периоде можно вычислить собственную частоту колебательной системы.

В технике и природе существуют колебания с разными значениями частот. К примеру, маятник, который колеблется в Исаакиевском соборе в Петербурге, имеет частоту 0,05 Гц, а у атомов она составляет несколько миллионов мегагерц.

Через некоторый промежуток времени наблюдается затухание свободных колебаний. Именно поэтому в реальной практике применяют вынужденные колебания. Они востребованы в разнообразных вибрационных машинах. Вибромолот является ударно-вибрационной машиной, которая предназначается для забивки в грунт труб, свай, иных металлических конструкций.

Электромагнитные колебания

Характеристика видов колебаний предполагает анализ основных физических параметров: заряда, напряжения, силы тока. В качестве элементарной системы, которая используется для наблюдения электромагнитных колебаний, является колебательный контур. Он образуется при последовательном соединении катушки и конденсатора.

При замыкании цепи, в ней возникают свободные электромагнитные колебания, связанные с периодическими изменениями электрического заряда на конденсаторе и тока в катушке.

Свободными они являются благодаря тому, что при их совершении нет внешнего воздействия, а используется только энергия, которая запасена в самом контуре.

При отсутствии внешнего воздействия, через определенный промежуток времени, наблюдается затухание электромагнитного колебания. Причиной подобного явления будет постепенная разрядка конденсатора, а также сопротивление, которым в реальности обладает катушка.

Именно поэтому в реальном контуре происходят затухающие колебания. Уменьшение заряда на конденсаторе приводит к снижению значения энергии в сравнении с ее первоначальным показателем. Постепенно она выделится в виде тепла на соединительных проводах и катушке, конденсатор полностью разрядится, а электромагнитное колебание завершится.

Значение колебаний в науке и технике

Любые движения, которые обладают определенной степенью повторяемости, являются колебаниями. Например, математический маятник характеризуется систематическим отклонением в обе стороны от первоначального вертикального положения.

Для пружинного маятника одно полное колебание соответствует его движению вверх-вниз от начального положения.

В электрическом контуре, который обладает емкостью и индуктивностью, наблюдается повторение заряда на пластинах конденсатора. В чем причина колебательных движений? Маятник функционирует благодаря тому, что сила тяжести заставляет его возвращаться в первоначальное положение. В случае пружиной модели подобную функцию осуществляет сила упругости пружины. Проходя положение равновесия, груз имеет определенную скорость, поэтому по инерции движется мимо среднего состояния.

Электрические колебания можно объяснить разностью потенциалов, существующей между обкладками заряженного конденсатора. Даже при его полной разрядке ток не исчезает, осуществляется перезарядка.

В современной технике применяются колебания, которые существенно различаются по своей природе, степени повторяемости, характеру, а также «механизму» появления.

Механические колебания совершают струны музыкальных инструментов, морские волны, маятник. Химические колебания, связанные с изменением концентрации реагирующих веществ, учитывают при проведении различных взаимодействий.

Электромагнитные колебания позволяют создавать различные технические приспособления, например, телефон, ультразвуковые медицинские приборы.

Колебания яркости цефеид представляют особый интерес в астрофизике, их изучением занимаются ученые из разных стран.

Заключение

Все виды колебаний тесно связаны с огромным количеством технических процессов и физических явлений. Велико их практическое значение в самолетостроении, строительстве судов, возведении жилых комплексов, электротехнике, радиоэлектронике, медицине, фундаментальной науке. Примером типичного колебательного процесса в физиологии выступает движение сердечной мышцы. Механические колебания встречаются в органической и неорганической химии, метеорологии, а также во многих иных естественнонаучных областях.

Первые исследования математического маятника были проведены в семнадцатом веке, а к концу девятнадцатого столетия ученым удалось установить природу электромагнитных колебаний. Русский ученый Александр Попов, которого считают «отцом» радиосвязи, проводил свои эксперименты именно на основе теории электромагнитных колебаний, результатах исследований Томсона, Гюйгенса, Рэлея. Ему удалось найти практическое применение электромагнитным колебаниям, использовать их для передачи радиосигнала на большое расстояние.

Академик П. Н. Лебедев на протяжении многих лет проводил эксперименты, связанные с получение электромагнитных колебаний высокой частоты с помощью переменны электрических полей. Благодаря многочисленным экспериментам, связанные с различными видами колебаний, ученым удалось найти области их оптимального использования в современной науке и технике.

Свободные электромагнитные колебания это происходящие под действием внутренних сил периодическое изменение заряда на конденсаторе, силы тока в катушке, а также электрических и магнитных полей в колебательном контуре.

    Незатухающие электромагнитные колебания

Для возбуждения электромагнитных колебаний служит колебательный контур , состоящий из соединённых последовательно катушки индуктивности L и конденсатора ёмкостью С (рис.17.1).

Рассмотрим идеальный контур, т. е. контур, омическое сопротивление которого равно нулю (R=0). Чтобы возбудить колебания в этом контуре, необходимо либо сообщить обкладкам конденсатора некоторый заряд, либо возбудить в катушке индуктивности ток. Пусть в начальный момент времени кон­денсатор заряжен до разности потенциалов U (рис. (рис.17.2, а); следователь­но, он обладает потенциальной энергией
.В этот момент времени ток в катушке I = 0. Такое состояние колеба­тельного контура аналогично состоянию математического маятника, отклоненного на угол α (рис. 17.3, а). В это время ток в катушке I=0. После соединения заряженного конденсатора с катушкой, под действием электрического поля, создаваемого зарядами на конденсаторе, свободные электроны в контуре начнут перемещаться от отрицательно заряженной обкладки конденсатора к положительно заряженной. Конденсатор начнёт разряжаться, и в контуре появится нарастающий ток. Переменное магнитное поле этого тока породит вихревое электрическое. Это электрическое поле будет направлено противоположно току и потому не даст ему сразу достигнуть максимального значения. Сила тока будет увеличиваться постепенно. Когда сила в контуре достигнет максимума, заряд на конденсаторе и напряжение между обкладками равно нулю. Это произойдёт через четверть периода t = π/4. При этом энергия электрического поля переходит в энергию магнитного поляW э =1/2C U 2 0 . В этот момент на положительно заряженной обкладке конденсатора окажется столько перешедших на неё электронов, что их отрицательный заряд полностью нейтрализует имевшийся там положительный заряд ионов. Ток в контуре начнёт уменьшаться и станет уменьшаться индукция создаваемого им магнитного поля. Изменяющееся магнитное поле снова породит вихревое электрическое, которое на этот раз будет направлено в ту же сторону, что и ток. Поддерживаемый этим полем ток будет идти в прежнем направлении и постепенно перезаряжать конденсатор. Однако по мере накопления заряда на конденсаторе его собственное электрическое поле будет всё сильнее тормозить движение электронов, и сила тока в контуре будет становиться всё меньше и меньше. Когда сила тока уменьшится до нуля, конденсатор окажется полностью перезаряженным.

Состояния системы, изображенные на рис. 17.2 и 17.3, соответствуют последовательным моментам времени Т = 0; ;;иТ.

ЭДС само­индукции, возникающая в контуре, равна напряжению на обкладках кон­денсатора: ε = U

и

Полагая
, получаем

(17.1)

Формула (17.1) аналогична дифференциальному уравнению гармонического колебания, рассмотренных в механике; его решением будет

q = q max sin(ω 0 t+φ 0) (17.2)

где q max - наибольший (начальный) заряд на обкладках конденсатора, ω 0 -круговая частота собственных колебаний контура, φ 0 -начальная фаза.

Согласно принятым обозначениям,
откуда

(17.3)

Выражение (17.3) называется формулой Томсона и показывает, что при R=0 период электромагнитных колебаний, возникающих в контуре, определяется только значениями индуктивности L и ёмкости С.

По гармоническому закону изменяется не только заряд на обкладках конденсатора, но и напряжение и сила тока в контуре:

где U m и I m – амплитуды напряжения и силы тока.

Из выражений (17.2), (17.4), (17.5) вытекает, что колебания заряда (напряжения) и тока в контуре сдвинуты по фазе на π/2. Следователь­но, ток достигает максимального значения в те моменты времени, ко­гда заряд (напряжение) на обкладках конденсатора равен нулю, и наоборот.

При зарядке конденсатора между его обкладками появляется электрическое поле, энергия которого

или

При разрядке конденсатора на катушку индуктивности в ней возникает магнитное поле, энергия которого

В идеальном контуре максимальная энергия электрического поля равна максимальной энергии магнитного поля:

Энергия заряженного конденсатора периодически изменяется со временем по закону

или

Учитывая, что
, получаем

Энергия магнитного поля соленоида изменяется со временем по закону

(17.6)

Учитывая, что I m =q m ω 0 , получаем

(17.7)

Полная энергия электромагнитного поля колебательного контура равна

W =W э +W м = (17.8)

В идеальном контуре суммарная энергия сохраняется, электромагнитные колебания незатухающие.

    Затухающие электромагнитные колебания

Реальный колебательный контур обладает омическим сопротивлением, поэтому колебания в нём затухают. Применительно к этому контуру закон Ома для полной цепи запишем в виде

(17.9)

Преобразовав это равенство:

и сделав замену:

и
,где β- коэффициент затухания получим

(17.10) - это дифференциальное уравнение затухающих электромагнитных колебаний .

Процесс свободных колебаний в таком контуре уже не подчиняется гармоническому закону. За каждый период колебаний часть электромагнитной энергии, запасенной в контуре, превращается в джоулево тепло, и колебания становятся затухающими (рис. 17.5). При малых затуханиях ω ≈ ω 0 , решением дифференциального уравнения будет уравнение вида

(17.11)

Затухающие колебания в электрическом контуре аналогичны затухающим механическим колебаниям груза на пружине при наличии вязкого трения.

Логарифмический декремент затухания равен

(17.12)

Интервал времени
в течение, которого амплитуда колебаний уменьшается в e ≈ 2,7 раза, называетсявременем затухания .

Добротность Q колебательной системы определяется по формуле:

(17.13)

Для RLC-контура добротность Q выражается формулой

(17.14)

Добротность электрических контуров, применяемых в радиотехнике, обычно порядка нескольких десятков и даже сотен.

Рассказать друзьям