Как находится гипотенуза. Как найти гипотенузу, если известны катеты

💖 Нравится? Поделись с друзьями ссылкой

Треугольник представляет собой геометрическое число, состоящее из трех сегментов, которые соединяют три точки, которые не лежат на одной линии. Точки, которые образуют треугольник, называются его точками, а сегменты бок о бок.

В зависимости от типа треугольника (прямоугольного, монохромного и т. Д.) Вы можете рассчитать сторону треугольника по-разному, в зависимости от исходных данных и условий проблемы.

Быстрая навигация для статьи

Чтобы вычислить стороны прямоугольного треугольника, используется теорема Пифагора, согласно которой квадрат гипотенузы равен сумме квадратов ноги.

Если мы отмечаем ноги буквами «a» и «b», а гипотенуза — «c», то страницы могут быть найдены со следующими формулами:

Если известны острые углы прямоугольного треугольника (a и b), его стороны могут быть найдены со следующими формулами:

Обрезанный треугольник

Треугольник называется равносторонним треугольником, в котором обе стороны одинаковы.

Как найти гипотенузу в двух ногах

Если буква «a» идентична одной и той же странице, «b» — основание, «b» — угол, противоположный основанию, «a» — смежный угол для вычисления страниц может использовать следующие формулы:

Два угла и боковая сторона

Если известны одна страница (c) и два угла (a и b) любого треугольника, формула синуса используется для вычисления оставшихся страниц:

Вы должны найти третье значение y = 180 — (a + b), потому что

сумма всех углов треугольника равна 180 °;

Две стороны и угол

Если известны две стороны треугольника (a и b) и угол между ними (y), для вычисления третьей стороны может быть использована теорема косинуса.

Как определить периметр прямоугольного треугольника

Треугольный треугольник представляет собой треугольник, один из которых равен 90 градусам, а два других — острые. расчет периметр такой треугольник в зависимости от количества известных сведений об этом.

Вам это понадобится

  • В зависимости от случая, навыки 2 трех сторон треугольника, а также один из его острых углов.

инструкции

первый Метод 1. Если известны все три страницы треугольник , Затем, независимо, перпендикулярно или не треугольно, периметр рассчитывается как: P = A + B + C, где возможно, c — гипотенуза; a и b — ноги.

второй Способ 2.

Если в прямоугольнике есть только две стороны, то, используя теорему Пифагора, треугольник может быть рассчитана по формуле: P = v (a2 + b2) + a + b или P = v (c2 — b2) + b + c.

третий Метод 3. Пусть гипотенуза c и острый угол? Учитывая прямоугольный треугольник, можно будет обнаружить периметр таким образом: P = (1 + sin?

четвёртая Метод 4. Говорят, что в правом треугольнике длина одной ноги равна а и, напротив, имеет острый угол. Затем вычислить периметр это треугольник будет выполняться по формуле: P = a * (1 / tg?

1 / сын? + 1)

пятые Способ 5.

Онлайн-расчет треугольника

Позвольте нашей ноге привести и быть включенным в нее, тогда диапазон будет рассчитываться как: P = A * (1 / CTG + 1 / + 1 cos?)

Похожие видео

Теорема Пифагора является основой любой математики. Определяет связь между сторонами истинного треугольника. Теперь указано 367 доказательств этой теоремы.

инструкции

первый Классическая школьная формулировка теоремы Пифагора звучит так: квадрат гипотенузы равен сумме квадратов ног.

Чтобы найти гипотенузу в прямоугольном треугольнике двух Catets, вы должны обратиться, чтобы построить квадрат длины ног, собрать их и взять квадратный корень из суммы. В оригинальной формулировке его высказывания рынок основан на гипотенузе, равном сумме квадратов из 2 квадратов производства Catete. Однако современная алгебраическая формулировка не требует введения представления области.

второй Например, прямоугольный треугольник, ноги которого составляют 7 см и 8 см.

Тогда, согласно теореме Пифагора, квадратная гипотенуза равна R + S = 49 + 64 = 113 см. Гипотенуза равна квадратному корню из числа 113.

Углы прямоугольного треугольника

Результатом стал необоснованный номер.

третий Если треугольники — ноги 3 и 4, то гипотенуза = 25 = 5. Когда вы извлекаете квадратный корень, вы получаете натуральное число. Числа 3, 4, 5 образуют пигагорейский триплет, так как они удовлетворяют соотношению x? + Y? = Z, что естественно.

Другими примерами пифагорейского триплета являются: 6, 8, 10; 5, 12, 13; 15, 20, 25; 9, 40, 41.

четвёртая В таком случае, если ноги идентичны друг другу, теорема Пифагора превращается в более примитивное уравнение. Например, пусть такая рука равна числу А и гипотенуза определена для С, а затем с? = Ap + Ap, C = 2A2, C = A? 2. В этом случае вам не нужен A.

пятые Теорема Пифагора — частный случай, который больше общей теоремы косинуса, который устанавливает связь между тремя сторонами треугольника для любого угла между двумя из них.

Совет 2: Как определить гипотенузу для ног и углов

Гипотенуза называется стороной в прямоугольном треугольнике, которая противоположна углу 90 градусов.

инструкции

первый В случае известных катетеров, а также острого угла прямоугольного треугольника может гипотенузы размер, равный отношению ноги к косинус / синус этого угла, если угол находился напротив / е включают в себя: Н = С1 (или С2) / грех, Н = С1 (или С2 ?) / cos ?. Пример: Пусть ABC задан неправильный треугольник с гипотенузой AB и под прямым углом C.

Пусть B равно 60 градусам и A 30 градусов. Длина ножки BC 8 см. Должна быть обнаружена длина гипотенузы AB. Для этого вы можете использовать один из вышеуказанных методов: AB = BC / cos60 = 8 см. AB = BC / sin30 = 8 см.

Гипотенуза — самая длинная сторона прямоугольника треугольник . Он расположен под прямым углом. Метод поиска гипотенузы прямоугольника треугольник в зависимости от исходных данных.

инструкции

первый Если ваши ноги перпендикулярны треугольник , то длина гипотенузы прямоугольника треугольник может быть обнаружено пифагорейским аналогом — квадрат длины гипотенузы равен сумме квадратов длин ног: c2 = a2 + b2, где a и b — длина ног правой треугольник .

второй Если известно, и одна из ног под острым углом, формула для нахождения гипотенузы будет зависеть от наличия или отсутствий под определенным углом по отношению к известному катету — смежно (катет расположена вблизи), или наоборот (расположено противоположный случай nego.V указанного угол равен доле гипотенуза ноги в косинусном угол: a = a / cos; E, с другой стороны, гипотенуза такая же, как отношение синусоидальных углов: da = a / sin.

Похожие видео

Полезные советы
Угловой треугольник, стороны которого связаны как 3: 4: 5, называемые египетской дельтой, из-за того, что эти фигуры широко используются архитекторами древнего Египта.

Это также самый простой пример треугольников Джерона, в котором страницы и область представлены целыми числами.

Треугольник называется прямоугольником, угол которого равен 90 °. Сторона, противоположная правому углу, называется гипотенузой, другая — ногами.

Если вы хотите найти, как прямоугольного треугольника, образованного некоторыми свойствами правильных треугольников, а именно тот факт, что сумма острых углов 90 °, который используется, и тот факт, что длина противоположной ноги составляет половину гипотенузы составляет 30 °.

Быстрая навигация для статьи

Обрезанный треугольник

Одним из свойств равного треугольника является то, что его два угла одинаковы.

Чтобы вычислить угол прямоугольного равного треугольника, вам нужно знать, что:

  • Это не хуже 90 °.
  • Значения острых углов определяются по формуле: (180 ° -90 °) / 2 = 45 °, т.е.

    Углы α и β равны 45 °.

Если известное значение одного из острых углов известно, другое можно найти по формуле: β = 180º-90º-α или α = 180º-90º-β.

Это соотношение наиболее часто используется, если один из углов составляет 60 ° или 30 °.

Ключевые понятия

Сумма внутренних углов треугольника равна 180 °.

Потому что это один уровень, два остаются острыми.

Вычислить треугольник онлайн

Если вы хотите их найти, вам нужно знать, что:

Другие способы

Значения острых углов прямоугольного треугольника могут быть вычислены из среднего значения — с линией от точки на противоположной стороне треугольника, а высота — линия представляет собой перпендикуляр, опущенной из гипотенузы под прямым углом.

Пусть медиана вытягивается от правого угла до середины гипотенузы, а h — высота. В этом случае оказывается, что:

  • sin α = b / (2 * s); sin β = a / (2 * s).
  • cos α = a / (2 * s); cos β = b / (2 * s).
  • sin α = h / b; sin β = h / a.

Две страницы

Если длины гипотенузы и одна из ног известны в прямоугольном треугольнике или с двух сторон, то для определения значений острых углов используются тригонометрические тождества:

  • α = arcsin (a / c), β = arcsin (b / c).
  • α = arcos (b / c), β = arcos (a / c).
  • α = arctg (a / b), β = arctg (b / a).

Длина прямоугольного треугольника

Площадь и площадь треугольника

периметр

Окружность любого треугольника равна сумме длин трех сторон. Общая формула для поиска треугольного треугольника:

где P — окружность треугольника, a, b и c его стороны.

Периметр равного треугольника можно найти путем последовательного объединения длин его сторон или умножения боковой длины на 2 и добавления к продукту длины основания.

Общая формула для нахождения равновесного треугольника будет выглядеть так:

где P — периметр равного треугольника, но либо b, b — основание.

Периметр равностороннего треугольника можно найти путем последовательного объединения длины его сторон или путем умножения длины любой страницы на 3.

Общая формула для нахождения обода равносторонних треугольников будет выглядеть так:

где P — периметр равностороннего треугольника, a — любая из его сторон.

область

Если вы хотите измерить область треугольника, вы можете сравнить ее с параллелограммом. Рассмотрим треугольник ABC:

Если мы возьмем тот же треугольник и зафиксируем его так, чтобы мы получили параллелограмм, мы получим параллелограмм той же высоты и основы, что и этот треугольник:

В этом случае общая сторона треугольников складывается вместе по диагонали формованного параллелограмма.

Из свойств параллелограмма. Известно, что диагонали параллелограмма всегда делятся на два равных треугольника, то поверхность каждого треугольника равна половине диапазона параллелограмма.

Так как площадь параллелограмма совпадает с продуктом его базовой высоты, площадь треугольника будет равна половине этого продукта. Таким образом, для ΔABC область будет одинаковой

Теперь рассмотрим прямоугольный треугольник:

Два одинаковых прямоугольных треугольника можно сгибать в прямоугольник, если он прислоняется к ним, что каждая другая гипотенуза.

Так как поверхность прямоугольника совпадает с поверхностью соседних сторон, площадь данного треугольника одинакова:

Отсюда можно заключить, что поверхность любого прямоугольного треугольника равна произведению ног, деленная на 2.

Из этих примеров можно сделать вывод, что поверхность каждого треугольника такая же, как произведение длины, а высота снижается до подложки, разделенной на 2.

Общая формула для поиска области треугольника будет выглядеть так:

где S — область треугольника, но его основание, но высота падает на дно a.

Инструкция

Если необходимо рассчитать по теореме Пифагора, воспользуйтесь следующим алгоритмом:- Определите в треугольнике, какие стороны являются катетами, а – гипотенузой. Две стороны, образующие угол в девяносто градусов и есть катеты, оставшаяся третья – гипотенуза. (см )- Возведите во вторую степень каждый катет данного треугольника, то есть умножьте на себя. Пример 1. Пусть надо вычислить гипотенузу, если один катет в треугольнике – 12 см, а другой – 5 см. Во-первых, квадраты катетов равны: 12*12=144 см и 5*5 = 25 см.- Далее определите сумму квадратов катетов. Определенное число является гипотенузы , нужно избавиться от второй степени числа, чтобы найти длину этой стороны треугольника. Для этого извлеките из-под квадратного корня значение суммы квадратов катетов. Пример 1. 144+25=169. Корень квадратный из 169 будет 13. Следовательно, длина данной гипотенузы равна 13 см.

Другой способ вычисления длины гипотенузы заключается в терминологии синуса и углов в треугольнике. По определению: синус угла альфа - противолежащего катета к гипотенузе. То есть, глядя на рисунок, sin a = CВ / АВ. Отсюда, гипотенуза АВ = СВ / sin a.Пример 2. Пусть угол 30 градусам, а противолежащий ему катет - 4 см. Нужно найти гипотенузу. Решение: АВ = 4 см/ sin 30 = 4 см / 0,5 = 8 см. Ответ: длина гипотенузы равна 8 см.

Аналогичный способ нахождения гипотенузы из определения косинуса угла. Косинус угла - отношение прилежащего к нему катета и гипотенузы . То есть, cos а = АС/АВ, отсюда АВ = АС/cos а. Пример 3. В треугольнике АВС, АВ - гипотенуза, угол ВАС равен 60 градусам, катет АС - 2 см. Найти АВ.
Решение: АВ = АС/cos 60 = 2/0,5 = 4 см. Ответ: гипотенуза составляет 4 см в длине.

Полезный совет

При нахождении значения синуса или косинуса угла воспользуйтесь либо таблицей синусов и косинусов, либо таблицей Брадиса.

Совет 2: Как найти длину гипотенузы в прямоугольном треугольнике

Гипотенузой называют самую длинную из сторон в прямоугольном треугольнике, поэтому не удивительно, что с греческого языка это слово переводится как «натянутая». Эта сторона всегда лежит напротив угла в 90°, а стороны, образующие этот угол называют катетами. Зная длины этих сторон и величины острых углов в разных комбинациях этих значений можно вычислить и длину гипотенузы.

Инструкция

Если известны длины обоих треугольника (А и В), то используйте длины гипотенузы (С) самый, пожалуй, известный на математический постулат - теорему Пифагора. Он гласит, что квадрат длины гипотенузы сумме квадратов длин катетов, из чего вытекает, что вам следует вычислить корень из суммы возведенных в квадрат длин двух сторон: С=√(А²+В²). Например, если длина одного катета 15 , а - 10 сантиметрам, то длина гипотенузы составит приблизительно 18,0277564 сантиметра, так как √(15²+10²)=√(225+100)= √325≈18,0277564.

Если известна длина только одного из катетов (А) в прямоугольном треугольнике, а также величина угла, лежащего напротив него (α), то длину гипотенузы (С) можно с помощью одной из тригонометрических функций - синуса. Для этого разделите длину известной стороны на синус известного угла: С=А/sin(α). Например, если длина одного из катетов равна 15 сантиметрам, а величина угла в противоположной ему вершине треугольника составляет 30°, то длина гипотенузы будет равна 30 сантиметрам, так как 15/sin(30°)=15/0,5=30.

Если в прямоугольном треугольнике известна величина одного из острых углов (α) и длина прилегающего к нему катета (В), то для вычисления длины гипотенузы (С) можно использовать другую тригонометрическую функцию - косинус. Вам следует разделить длину известного катета на косинус известного угла: С=В/ cos(α). Например, если длина этого катета равна 15 сантиметрам, а величина острого угла, к нему прилегающего, составляет 30°, то длина гипотенузы составит приблизительно 17,3205081 сантиметров, так как 15/cos(30°)=15/(0,5*√3)=30/√3≈17,3205081.

Длиной принято обозначать расстояние между двумя точками какого-либо отрезка. Это может быть прямая, ломаная или замкнутая линия. Вычислить длину можно довольно простым путем, если знать некоторые другие показатели отрезка.

Инструкция

Если вам нужно найти длину стороны квадрата, то это не составит , если вам известна его площадь S. В связи с тем, что все стороны квадрата имеют , вычислить величину одной из них можно по формуле: a = √S.

Инструкция

Пусть известен один из катетов прямоугольного треугольника. Предположим |BC| = b. Тогда мы можем воспользоваться теоремой Пифагора, согласно гипотенузы равен сумме квадратов катетов: a^2 + b^2 = c^2. Из данного уравнения находим неизвестный катет |AB| = a = √ (c^2 - b^2).

Пусть известен один из углов прямоугольного треугольника, предположим ∟α. Тогда AB и BC прямоугольного треугольника ABC можно найти, используя тригонометрические функции. Так получаем: синус ∟α равен отношению противолежащего катета sin α = b / c, косинус ∟α равен отношению прилежащего катета к гипотенузе cos α = a / c. Отсюда находим требуемые длины сторон: |AB| = a = с * cos α, |BC| = b = c * sin α.

Пусть известно соотношение катетов k = a / b. Также решаем задачу с использованием тригонометрических функций. Отношение a / b есть ни что иное, как котангенс ∟α: прилежащего катета ctg α = a / b. В этом случае из данного равенства выражаем a = b * ctg α. И подставляем в теорему Пифагора a^2 + b^2 = c^2:

b^2 * ctg^2 α + b^2 = c^2. Выносим b^2 за скобки, получаем b^2 * (ctg^2 α + 1) = c^2. И отсюда легко получаем длину катета b = c / √(ctg^2 α + 1) = c / √(k^2 + 1), где k – заданное соотношение катетов.

По аналогии, если известно соотношение катетов b / a, решаем задачу с применением тангенс tg α = b / a. Подставляем значение b = a * tg α в теорему Пифагора a^2 * tg^2 α + a^2 = c^2. Отсюда a = c / √(tg^2 α + 1) = c / √(k^2 + 1), где k – заданное соотношение катетов.

Рассмотрим частные случаи.

∟α = 30°. Тогда |AB| = a = c * cos α = c * √3 / 2; |BC| = b = c * sin α = c / 2.

∟α = 45°. Тогда |AB| = |BC| = a = b = c * √2 / 2.

Видео по теме

Обратите внимание

Квадратные корни извлекаются с положительным знаком, т.к. длина не может быть отрицательной величиной. Это кажется очевидным, но данная ошибка очень распространена, если решать задачу на автомате.

Полезный совет

Для нахождения катетов прямоугольного треугольника удобно использовать формулы приведения: sin β = sin (90° - α) = cos α; cos β = cos (90° - α) = sin α.

Источники:

  • Таблицы Брадиса для нахождения величин тригонометрических функций

Соотношения между сторонами и углами прямоугольного треугольника рассматриваются в разделе математики, который называется тригонометрией. Для нахождения сторон прямоугольного треугольника достаточно знать теорему Пифагора, определения тригонометрических функций, и иметь какое-либо средство для нахождения значений тригонометрических функций, например, калькулятор или таблицы Брадиса. Рассмотрим ниже основные случаи задач нахождения сторон прямоугольного треугольника.

Вам понадобится

  • Калькулятор, таблицы Брадиса.

Инструкция

Если вам задан один из острых углов, например, A, и гипотенуза, то катеты можно найти из определений основных тригонометрических :

a= c*sin(A), b= c*cos(A).

Если задан один из острых углов, например, A, и один из катетов, например, a, то гипотенуза и другой катет вычисляются из соотношений: b=a*tg(A), c=a*sin(A).

Полезный совет

В том случае, если вам не известно значение синуса или косинуса какого-то из необходимых для расчёта углов, вы можете воспользоваться таблицами Брадиса, в них приводятся значения тригонометрических функций для большого числа углов. Кроме того, большинство современных калькуляторов способны рассчитывать синусы и косинусы углов.

Источники:

  • как вычислить сторону прямоугольного треугольника в 2019

Совет 3: Как найти угол, если известны стороны прямоугольного треугольника

Треугольник , один из углов которого является прямым (равен 90°), называют прямоугольным. Его самая длинная сторона всегда лежит напротив прямого угла и называется гипотенузой, а две другие стороны называют катетами. Если длины этих трех сторон известны, то найти величины всех углов треугольник а не составит труда, так как фактически потребуется вычислить всего один из углов. Сделать это можно несколькими способами.

Инструкция

Используйте для вычисления величин (α, β, γ) определения тригонометрических функций через прямоугольный тре. Такое , например, для синуса острого угла как отношение длины противолежащего катета к длине гипотенузы. Значит, если длины катетов (A и B) и гипотенузы (C), то найти, например, синус угла α, лежащего напротив катета A можно, разделив длину стороны А на длину стороны C (гипотенузы): sin(α)=A/C. Узнав значение синуса этого угла можно найти его величину в градусах, использовав обратную синусу функцию - арксинус. То есть α=arcsin(sin(α))=arcsin(A/C). Таким же способом можно найти и величину острого угла в треугольник е, но в этом нет необходимости. Так как сумма всех углов треугольник а составляет 180°, а в треугольник е один из углов равен 90°, то величину третьего угла можно посчитать как разность между 90° и величиной найденного угла: β=180°-90°-α=90°-α.

Вместо определения синуса можно использовать определение косинуса острого угла, которое формулируется как отношение длины прилежащего к искомому углу катета к длине гипотенузы: cos(α)=B/C. И здесь задействуйте обратную тригонометрическую функцию (арккосинус), чтобы найти величину угла в градусах: α=arccos(cos(α))=arccos(B/C). После этого, как и в предыдущем шаге, останется найти величину недостающего угла: β=90°-α.

Можно воспользоваться аналогичным тангенса - он выражается соотношением длины противолежащего искомому углу катета к длине катета прилежащего: tg(α)=A/B. Величину угла в градусах снова определяйте через обратную тригонометрическую функцию - : α=arctg(tg(α))=arctg(A/B). Формула величины недостающего угла останется без изменений: β=90°-α.

Видео по теме

Совет 4: Как найти длину стороны прямоугольного треугольника

Прямоугольным считается такой треугольник, у которого один из углов прямой. Сторона треугольника , расположенная напротив прямого угла, называется гипотенузой, а две другие стороны - катетами. Чтобы найти длины сторон прямоугольного треугольника , можно воспользоваться несколькими способами.

Инструкция

Можно узнать третьей стороны , зная длины двух других сторон треугольника . Это можно выполнить с помощью теоремы Пифагора, которая гласит, что квадрат прямоугольного треугольника сумме квадратов его катетов. (a² = b²+ c²). Отсюда можно выразить длины всех сторон прямоугольного треугольника :
b² = a² - c²;
c² = a² - b²
К примеру, у прямоугольного треугольника известна длина гипотенузы a (18 см) и одного из катетов, например c (14 см). Чтобы длину другого катета, требуется совершить 2 алгебраических действия:
с² = 18² - 14² = 324 - 196 = 128 см
c = √128 см
Ответ: длина катета составляет √128 см или, приблизительно, 11.3 см

Можно прибегнуть к , если известны длина гипотенузы и величина одного из острых данного прямоугольного треугольника . Пусть длина c, один из острых углов равен α. В таком случае, найти 2 другие стороны прямоугольного треугольника можно будет при помощи следующих формул:
a = с*sinα;
b = с*cosα.
Можно привести : длина гипотенузы равна 15 см, один из острых углов равен 30 градусам. Для нахождения длин двух других сторон нужно выполнить 2 действия:
a = 15*sin30 = 15*0.5 = 7.5 см
b = 15*cos30 = (15*√3)/2 = 13 см (приблизительно)

Самый нетривиальный способ найти длину стороны прямоугольного треугольника - это выразить ее из периметра данной фигуры:
P = a + b + c, где P - периметр прямоугольного треугольника . Из этого выражения легко выразить длину любой из сторон прямоугольного треугольника .

Совет 5: Как найти угол прямоугольного треугольника, зная все стороны

Знания всех трех сторон в прямоугольном треугольнике более чем достаточно для вычисления любого из его углов. Этой информации настолько много, что у вас даже появляется возможность выбрать, которые из сторон задействовать в расчетах, чтобы использовать наиболее вам симпатичную тригонометрическую функцию.

Инструкция

Если вы предпочтете иметь дело с арксинусом, используйте в расчете длину гипотенузы (С) - самой длинной стороны - и того катета (А), который лежит напротив искомого угла (α). Деление длины этого катета на длину гипотенузы даст величину синуса искомого угла, а обратная синусу функция - арксинус - из полученного значения восстановит величину угла в . Поэтому используйте в вычислениях такую : α = arcsin(A/C).

Для замены арксинуса арккосинусом задействуйте в вычислениях длины тех сторон, которые и образуют искомый угол (α). Одна из них будет гипотенузой (С), а другая - катетом (В). По определению косинус - длины прилегающего к углу катета к длине гипотенузы, а угла из значения косинуса функция арккосинус. Используйте такую формулу расчетов: α = arccos(B/C).

Можно использовать в расчетах . Для этого вам нужны длины двух коротких сторон - катетов. Тангенс острого угла (α) в прямоугольном треугольнике определяется отношением длины катета (А), лежащего напротив него, к длине прилежащего катета (В). По аналогии с описанными выше вариантами используйте такую формулу: α = arctg(А/B).

Формула

Какой треугольник называют прямоугольным?

Есть несколько типов треугольников. У одних все углы острые, у других – один тупой и два острых, у третьих – два острых и прямой. По этому признаку каждый тип этих геометрических фигур и получил название: остроугольные, тупоугольные и прямоугольные. То есть, прямоугольным называется такой треугольник, у которого один из углов составляет 90°. Есть и другое , схожее с первым. Прямоугольным называется треугольник, у которого две стороны перпендикулярны.

Гипотенуза и катеты

У остроугольного и тупоугольного треугольников отрезки, соединяющие вершины углов, называются просто сторонами. У стороны имеют и другие названия. Те, которые прилегают к прямому углу, называются катетами. Сторона, противолежащая прямому углу, называется гипотенузой. В переводе с греческого слово «гипотенуза» означает «натянутая», а «катет» - «перпендикуляр».

Соотношения между гипотенузой и катетами

Стороны прямоугольного треугольника связаны между собой определенными соотношениями, которые значительно облегчают вычисления. Например, зная размеры катетов, можно вычислить длину гипотенузы. Это соотношение по имени открывшего его получило название теоремы Пифагора и выглядит оно так:

c2=a2+b2, где с – гипотенуза, a и b – катеты. То есть, гипотенуза будет равна квадратному корню из суммы квадратов катетов. Чтобы найти любой из катетов, достаточно из квадрата гипотенузы вычесть квадрат другого катета и извлечь из полученной разности квадратный корень.

Прилежащий и противолежащий катет

Начертите прямоугольный треугольник АСВ. Буквой С принято обозначать вершину прямого угла, А и В – вершины острых углов. Стороны, противолежащие каждому углу, удобно назвать а, b и с, по названиям лежащих напротив них углов. Рассмотрите угол А. Катет а для него будет противолежащим, катет b – прилежащим. Отношение противолежащего катета к гипотенузе называется . Вычислить эту тригонометрическую функцию можно по формуле: sinA=a/c. Отношение прилежащего катета к гипотенузе называется косинусом. Вычисляется он по формуле: cosA=b/c.

Таким образом, зная угол и одну из сторон, можно по этим формулам вычислить другую сторону. Тригонометрическими соотношениями связаны и оба катета. Отношение противолежащего к прилежащему называется тангенсом, а прилежащего к противолежащему – котангенсом. Выразить эти соотношения можно формулами tgA=a/b или ctgA=b/a.

Есть три варианта решения этой задачи. Первый - если в условиях задачи дано, что катеты равны (по сути, мы имеем прямоугольный равнобедренный треугольник). Второй - если еще дан какой-то угол (кроме угла в 45%, тогда мы имеем тот же равнобедренный треугольник и возвращаемся к первому варианту). И третий - когда известен один из катетов. Рассмотрим данные варианты подробнее.

Как найти равные катеты, при известной гипотенузе

  • первый катет (обозначим его буквой "a") равен второму катету ((обозначим его буквой "b"): a=b;
  • размер катетов;

В этом варианте решение задачи основывается на использовании теоремы Пифагора. Ее применяют к прямоугольным треугольникам и основной ее вариант звучит, как: "Квадрат гипотенузы равен сумме квадратов катетов". Так, как катеты у нас равны, то мы можем обозначать оба катета одним и тем же сиволом: a=b, значит - a=a.

  1. Подставляем наши условные обозначения в теорему (с учетом вышеизложенного):
    c^2=a^2+a^2,
  2. Далее максимально упрощаем формулу:
    с^2=2*(a^2) - группируем,
    с=√2*а - подносим обе части уравнения к квадратному кореню,
    a=c/√2 - выносим искомое.
  3. Подставлем данное значение гипотенузы и получаем решение:
    a=x/√2

Как найти катеты, при известной гипотенузе и угле

  • гипотенуза (обозначим ее буквой "c") равна х см: c=x;
  • угол β равный q: β=q;
  • размер катетов;

Для решения этой задачи необходимо использовать тригонометрические функции. Найболее популярны две из них:

  • функция синуса - синус искомого угла равен отношению противолежащего катета к гипотенузе;
  • функция косинуса - косинус искомого угла равен отношению прилежащего катета к гипотенузе;

Вы можете использовать любую. Я наведу пример с использованием первой. Пусть катеты у нас обозначаються символами "a" (прилежащий к углу) и "b" (противолежащий к углу). Соответственно наш угол лежит между катетом "a" и гипотенузой.

  1. Подставляем выбранные условные обозначения в формулу:
    sinβ = b/c
  2. Выводим катет:
    b=c*sinβ
  3. Подставляем наши данный и имеем один катет.
    b=c*sinq

Второй катет можно найти воспользовавшись второй тригонометрической функцией, или же перейти к третьему варианту.

Как найти один катет, если известна гипотенуза и другой катет

  • гипотенуза (обозначим ее буквой "c") равна х см: c=x;
  • катет (обозначим его буквой "b") равен y см: b=y;
  • размер другого катета (обозначим его буквой "a");

В этом варианте решением задачи, как и в первом, является использование теоремы Пифагора.

  1. Подставляем наши условные обозначения в теорему:
    c^2=a^2+b^2,
  2. Выносим необходимый катет:
    a^2=c^2-b^2
  3. Подносим обе части уравнения к квадратному кореню:
    a=√(c^2-b^2)
  4. Подставляем данные значения и имеем решение:
    a=√(x^2-y^2)

Геометрия - не простая наука. Она требует к себе особого внимания и знания точных формул. Эта разновидность математики пришла к нам из Древней Греции и даже по прошествии нескольких тысяч лет она не теряет свою актуальность. Не стоит напрасно думать, что это бесполезный предмет, забивающий голову студентов и школьников. На самом деле геометрия применима во многих сферах жизни. Без нее знаний по геометрии не строится ни одно архитектурное сооружение, не создаются автомобили, космические корабли и самолеты. Сложные и не очень развязки дорог и колей - это все нуждается в геометрических расчетах. Да даже порой ремонт в своей комнате вы не сможете сделать без знания элементарных формул. Так что не стоит недооценивать всю важность этого предмета. Наиболее частые формулы, которые приходится использовать во многих решениях, мы изучаем еще в школе. Одна из них это нахождение гипотенузы в прямоугольном треугольнике. Чтобы разобраться в этом, читайте ниже.

Прежде чем приступить к практике, давайте начнем с основ и определим, что такое гипотенуза в прямоугольном треугольнике.

Гипотенуза - одна из сторон в прямоугольном треугольнике, которая находится напротив угла в 90 градусов (прямой угол) и всегда является самой длинной.

Существует несколько способов, как найти длину искомой гипотенузы в заданном прямоугольном треугольнике.

В случае, когда катеты нам уже известны- мы используем теорему Пифагора, где мы складываем сумму из квадратов двух катетов, что и будет равняться квадрату гипотенузы.

а и b -катеты, c- гипотенуза.

В нашем случае, для прямоугольного треугольника, соответственно, формула будет следующей:

Если подставить известные числа катетов а и b, пусть это будет а=3 а b=4, то с=√32+42 , то получим с=√25, с=5

Когда у нас известна длина лишь одного катета, то формулу можно преобразовать, чтобы найти длину второго. Выглядит это следующим образом:

В том случае, когда по условиям задачи у нас известен катет А и гипотенуза С, то можно рассчитать прямой угол треугольника, назовем его α.

Для этого воспользуемся формулой:

Пусть второй угол, который нам необходимо вычислить, будет β. Учитывая, что мы знаем сумма углов треугольника, которая составляет 180°, то: β= 180°-90°-α

В том случае, когда нам известны значения катетов, можно по формуле найти значение острого угла треугольника:

В зависимости от известных общепринятых значений, стороны прямоугольника можно найти по множеству разных формул. Приведем некоторые из них:

При решении задач с нахождением неизвестных в прямоугольном треугольнике, очень важно акцентировать внимание на уже известные вам значения и, исходя из этого, подставлять их в нужную формулу. Сразу запомнить их будет трудно, поэтому советуем вам сделать небольшую рукописную подсказку и вклеить в тетрадь.

Как видите, если вникнуть во все тонкости этой формулы, то можно без труда разобраться в этом. Рекомендуем попробовать решить несколько задач, основанных на данной формуле. После того, как увидите свой результат, вам станет ясно, поняли вы эту тему или нет. Постарайтесь не заучивать, а вникнуть в материал, это будет куда полезнее. Зазубренный материал забывается уже после первой контрольной, а эта формула вам будет встречаться достаточно часто, поэтому сначала поймите ее, а после заучивайте на память. Если эти рекомендации не дали положительного эффекта, то есть смысл в дополнительных занятиях этой темы. И помните: ученье свет, а не ученье тьма!

Рассказать друзьям