Нарушение микроциркуляции крови и средства для ее улучшения. Система микроциркуляции: особенности функциональной организации и регуляции

💖 Нравится? Поделись с друзьями ссылкой

Микроциркуляторная система осуществляет наиважнейшие для организма функции. Главная из них — обеспечение нормального течения обменных процессов.
Условно микроциркуляторную систему можно разделить на артериальную, капиллярную и венозную сеть. Основное звено микроциркуляции составляют капилляры. Кровь к капиллярам доставляют артериолы, а оттекающая из них кровь собирается в венулы, которые при необходимости способны перераспределять ее в разные участки организма.
Для бесперебойного осуществления процессов микроциркуляции имеют значение и физические свойства крови, определяющие ее текучесть. В норме эритроциты, например, проходя через капилляры, способны деформироваться, сгибаться. Если же движение крови замедляется, как то бывает при сердечной недостаточности, ожогах, интоксикации организма, эритроциты склеиваются между собой, забивая, как пробки, капилляры. При некоторых заболеваниях эритроциты становятся жесткими, застревают в капиллярах, нарушая их проходимость. Иногда вязкость крови повышается за счет склеивания тромбоцитов, прилипания их к стенке капилляров.
Капилляры активно участвуют в обмене веществ между кровью и клетками организма, вступая с ними в непосредственный контакт. Таким образом, они являются не только частью кровеносной системы, но и неотъемлемой частью любого органа. Лишенная мышечных элементов стенка капилляра тонка и податлива. Она способна растягиваться, что значительно увеличивает просвет сосуда.
В квадратном миллиметре мышечной ткани насчитывается 2000 капилляров. Много их в легких, сердце, печени, почках.
И вместе с тем, как показывают исследования, каждый орган функционирует, используя не все свои микроциркуляторные возможности. Так, в легких обычно работает лишь одна треть микрососудов, а две трети находятся в резерве. Они вступают в действие при повышении мышечной нагрузки, а также во время болезни, когда возникает необходимость активизировать газообмен.
Не меньшими резервами обладают и другие органы, которые мобилизуются, поддерживая состояние компенсации, когда организм борется с болезнью.
При различных заболеваниях в первую очередь страдает микроциркуляторная система. В одних случаях усиливается или ослабляется тонус артериол или венул, в других — проницаемость капилляров, в третьих — изменяются свойства крови.
В настоящее время врач имеет возможность с помощью совершенной техники получить полное представление о функции микрососудов, оценить происходящие в них изменения, а следовательно, и принять меры, направленные на нормализацию нарушенных функций.
Для этого используют лекарственные средства, применяют физиотерапевтические процедуры, лечебную физкультуру. Специалисты располагают медикаментами, воздействующими на разные звенья микроциркуляции. С помощью, например, гипотензивных средств снижают тонус артериол. А если его необходимо, наоборот, повысить, применяют так называемые прессорные средства. Вместе с упорядочением кровотока в капиллярной сети улучшаются и обменные процессы.
Когда развивается воспалительный процесс в органах и тканях, возникает необходимость воздействовать на проницаемость сосудистой стенки. Для этого используют комплекс медикаментов, включающий противовоспалительные средства, витамины, гормональные препараты.
При пороках сердца, ишемической болезни сердца, воспалении миокарда ослабленная мышца сердца не справляется с нагрузкой. Снизить нагрузку, а значит, уменьшить приток крови к сердцу помогают лекарства, расширяющие периферические сосуды.
У страдающих гипертонической болезнью наблюдаются изменения в стенках мелких сосудов, и они становятся более проницаемыми для белков крови. Белки пропитывают стенки артериол, из-за чего гибнет часть покрывающих сосуды эндотелиальных клеток, а на их месте разрастается соединительная ткань. Это влечет за собой усиление склеротических процессов. Разрастания соединительной ткани способны закрыть просвет сосудов сердца, почек, головного мозга. В результате нарушается кровообращение в этих органах. А при сужении сосудов почек начинает усиленно продуцироваться активное вещество — ренин, вызывающее еще более стойкое повышение артериального давления.
В арсенале врача есть препараты, которые предупреждают нарушение функции микроциркуляторной системы, в частности закупорку сосудов микроциркуляторного русла. К ним относятся такие медикаменты, как антикоагулянты, разжижающие кровь, антиагреганты, препятствующие слипанию эритроцитов.
Все это позволяет врачу своевременно на клеточном уровне воздействовать на патологический процесс, происходящий в организме, не допуская серьезных нарушений функции микроциркуляторной системы.

Н. М. МУХАРЛЯМОВ
Р. А. ГРИГОРЯНЦ

Кровообращение начинается в тканях , где совершается обмен веществ через стенки капилляров (кровеносных и лимфатических).

Капилляры составляют главную часть микроциркуляторного русла, в колюром происходит микроциркуляция крови и лимфы. К микроциркулятор-ному руслу относятся также лимфатические капилляры и интерстициальные пространства.

Микроциркуляция - это движение крови и лимфы в микроскопической части сосудистого русла. Микроциркуляторное русло, по В. В. Куприянову , включает 5 звеньев: 1) артериол ы как наиболее дистальные звенья артериальной системы, 2) прекапилляры, или прекапиллярные артериолы, являющиеся промежуточным звеном между артериолами и истинными капиллярами; 3) капилляры; 4) посткапилляры, или посткапиллярные венулы, и 5) венулы, являющиеся корнями венозной системы.

Все эти звенья снабжены механизмами, обеспечивающими проницаемость сосудистой стенки и регуляцию кровотока на микроскопическом уровне. Микроциркуляция крови регулируется работой мускулатуры артерий и арте-риол, а также особых мышечных сфинктеров, существование которых предсказал И. М. Сеченов и назвал их «кранами». Такие сфинктеры находятся в пре- и посткапиллярах. Одни сосуды микроциркуляторного русла (артериолы) выполняют преимущественно распределительную функцию, а остальные (прекапилляры, капилляры, посткапилляры и венулы) - преимущественно трофическую (обменную).

В каждый данный момент функционирует только часть капилляров (открытые капилляры), а другая остается в резерве (закрытые капилляры).

Кроме названных сосудов, советскими анатомами доказана принадлежность к микроциркуляторному руслу артериоловенулярных анастомозов, имеющихся во всех органах и представляющих пути укороченного тока артериальной крови в венозное русло, минуя капилляры. Эти анастомозы подразделяются на истинные анастомозы, или шунты (с запирательными устройствами, способными перекрывать ток крови, и без них), и на межарте-риолы, или полушунты. Благодаря наличию артериоловенулярных анастомозов терминальный кровоток делится на два пути движения крови: 1) транскапиллярный, служащий для обмена веществ, и 2) необходимый для регуляции гемодинамического равновесия внекапиллярный юкстакапиллярный (от лат. juxta - около, рядом) ток крови; последний совершается благодаря наличию прямых связей (шунтов) между артериями и венами (артериовенозные анастомозы) и артериолами и венулами (артериоловенулярные анастомозы).

Благодаря внекапиллярному кровотоку происходят при необходимости разгрузка капиллярного русла и ускорение транспорта крови в органе или данной области тела. Это как бы особая форма окольного, коллатерального, кровообращения (Куприянов В. В., 1964).


Микроциркуляторное русло представляет не механическую сумму различных сосудов, а сложный анатомо-физиологический комплекс, состоящий из 7 звеньев (5 кровеносных, лимфатического и интерстициального) и обеспечивающий основной жизненно важный процесс организма - обмен веществ. Поэтому В. В. Куприянов рассматривает его как систему микроциркуляции.

Строение микроциркуляторного русла имеет свои особенности в разных органах, соответствующие их строению и функции. Так, в печени встречаются широкие капилляры - печеночные синусоиды, в которые поступает артериальная и венозная (из воротной вены) кровь. В почках имеются артериальные капиллярные клубочки. Особые синусоиды свойственны костному мозгу и т. п.

Пропесс микроциркуляции жидкости не ограничивается микроскопическими кровеносными сосудами. Организм человека на 70 % состоит из воды, которая содержится в клетках и тканях и составляет основную массу крови и лимфы. Лишь xls всей жидкости находится в сосудах, а остальные 4/5 ее содержатся в плазме клеток и в межклеточной среде. Микроциркуляция жидкости осуществляется, кроме кровеносной системы, также в тканях, в серозных и других полостях и на пути транспорта лимфы.

Из микроциркуляторного русла кровь поступает по венам, а лимфа - по лимфатическим сосудам, которые в конечном счете впадают в присердеч-ные вены. Венозная кровь, содержащая присоединившуюся к ней лимфу, вливается в сердце, сначала в правое предсердие, а из него в правый желудочек. Из последнего венозная кровь поступает в легкие по малому (легочному) кругу кровообращения.

Микроциркуляция (греч. mikros малый + лат. circulatio круговращение) - транспорт биологических жидкостей на уровне тканей организма: движение крови по микрососудам капиллярного типа (капиллярное кровообращение), перемещение интерстициальной жидкости и веществ по межклеточным пространствам и транспорт лимфы по лимфатическим микрососудам. Термин введен американскими исследователями в 1954 г. с целью интеграции методических подходов и сведений, которые относились преимущественно к капиллярному кровотоку (см. Кровообращение ). Развитие этого направления привело к представлениям о микроциркуляции как о сложной системе, интегрирующей деятельность трех подсистем (отсеков, или компартментов): гемомикроциркуляторной, лимфоциркуляторной и интерстициальной. Основной задачей системы микроциркуляции в организме является поддержание динамического равновесия объемных и массовых параметров жидкости и веществ в тканях - обеспечение гомеостаза внутренней среды. Система микроциркуляции осуществляет транспорт крови и лимфы по микрососудам, перенос газов (см. Газообмен ), воды, микро- и макромолекул через биологические барьеры (стенки капилляров) и движение веществ во внесосудистом пространстве.

Центральное звено системы - кровеносные и лимфатические капилляры, самые тонкостенные сосуды диаметром от 3-5 до 30-40 мкм (рис. 1, 2 ). являющиеся важнейшим компонентом биологических барьеров. Стенки кровеносных капилляров, сформированные в основном из специализированных эндотелиальных клеток (рис. 3 ), допускают избирательное снабжение рабочих элементов ткани кислородом, ионами. биологически активными молекулами, плазменными протеинами и другими веществами, циркулирующими в крови. Лимфатические капилляры (см. Лимфатическая система ), стенки которых также образованы эндотелием, эвакуируют из тканей избыток жидкости, молекулы белка и продукты обмена клеток. Состояние капиллярного кровообращения определяют резистивные микрососуды - артериолы и прекапилляры, имеющие гладкие мышечные клетки. Последние обеспечивают изменения величины рабочего просвета сосудов и, следовательно, объема крови, поступающего в капилляры. Из капилляров кровь собирается в емкостные сосуды - посткапилляры и венулы, которые также включены в процессы транспорта веществ. Пути внекапиллярного кровотока (анастомозы, шунты) участвуют в кровенаполнении капилляров. Транспорт веществ через эндотелиальную выстилку кровеносных и лимфатических сосудов капиллярного типа (сосудистая проницаемость) осуществляется посредством межклеточных контактов, открытых и диафрагмированных фенестр и пор, а также системой плазмолеммальных везикул, или инвагинаций (рис. 4 ). Многочисленность структур, образованных клеточной мембраной (см. Мембраны биологические ), служит отличительным признаком эндотелиальных клеток. Основной движущей силой, доставляющей тканям кровь и обеспечивающей продвижение интерстициальной жидкости и лимфы, является пропульсивная деятельность сердца.

С функциональной точки зрения все транспортные процессы в системе микроциркуляции взаимосвязаны и взаимообусловлены. Эта взаимосвязь достигается благодаря градиентам сил (давлений) и концентраций на уровне эндотелиальных барьеров, разделяющих компартменты, и в каждом из них. Кровь как сложная гетерогенная система корпускулярной природы имеет реологические свойства, существенно отличающие ее от других жидкостей. На условия гемодинамики в системе микроциркуляции оказывают влияние не только структурные механизмы микроциркуляторного русла, но и агрегатное состояние крови, взаимодействие между форменными элементами и циркулирующей плазмой. Гемодинамические параметры в микрососудах тесно связаны с проницаемостью их стенок, а последняя отражает градиенты сил и концентрацию белков в интерстиции. В свою очередь, условия, существующие в интерстициальном окружении лимфатических капилляров, формируют механизмы лимфообразования и продвижения лимфы. Микроциркуляция как основная система, интегрирующая жизнедеятельность тканей, регулируется преимущественно местными механизмами контроля - медиаторным, миогенным. Нервные и гуморальные влияния реализуются на уровне гладкомышечного аппарата резистивных микрососудов и в сокращении эндотелиальных клеток. В деятельности системы микроциркуляции очень эффективно проявляется принцип саморегуляции, в соответствии с которым изменения функциональных параметров в каждом из трех компартментов и на границах между ними существенно влияют на транспортные явления в соседних отсеках. Саморегуляторный механизм обеспечивает, в частности, защиту тканей от избыточного поступления и накопления жидкости. Недостаточность какого-либо звена этого механизма и невозможность ее компенсации приводит к тканевому отеку - одному из наиболее распространенных синдромов при многих патологических состояниях.

Основные параметры, характеризующие функционирование системы микроциркуляции , определяются условиями гемодинамики на уровне капилляров, проницаемостью их стенок, силами, обеспечивающими движение интерстициальной жидкости и лимфы. Скорость кровотока в капиллярах обычно не превышает 1 мм/с , причем эритроциты движутся несколько быстрее плазмы. Гидростатическое давление в сосудах капиллярного типа в разных органах регистрируется в диапазоне 18-40 мм рт. ст . Как правило, оно несколько превосходит коллоидно-осмотическое давление белков плазмы (19-21 мм рт. ст .), благодаря чему градиент давления через стенки капилляров направлен в сторону ткани и фильтрация жидкости доминирует над реабсорбцией ее в плазму. Избыточный объем поступающей в ткань жидкости реабсорбируется корнями лимфатической системы или используется на образование секретов, например в пищеварительных железах. Гидравлическая проводимость стенок кровеносных микрососудов, т.е. проницаемость для воды, колеблется в зависимости от их характера (артериальные или венозные капилляры, венулы) и органной принадлежности. В капиллярах с непрерывным эндотелием (мышцы, кожа, сердце, ц.н.с.) она варьирует в пределах (1-130)× 10 -3 мкм/с× мм рт. ст . Величина проводимости фенестрированного эндотелия (почки, слизистая оболочка кишки, железы) обычно на 2-3 порядка выше. Другой важный параметр, характеризующий способность капиллярной стенки пропускать вещества, растворимые в воде, - коэффициент осмотического отражения - является безразмерной величиной и не превышает 1. Его значения особенно важны для оценки проницаемости эндотелия по отношению к белкам плазмы крови. В стенке капилляров коэффициент отражения белков типа альбумина составляет 0,7-0,9. Это означает, что проницаемость капиллярного эндотелия для макромолекул невелика; для ионов и небольших молекул значения коэффициента отражения близки к 0,1. Еще один параметр - коэффициент проницаемости для ионов К + , Na+ имеет величину порядка 10 -5 см/с . Для молекул средней массы (сахара, аминокислоты) он несколько меньше.

Величина гидростатического давления интерстициальной жидкости (в межклеточном пространстве) оценивается обычно как близкая к нулю, т.е. мало отличающаяся от величины атмосферного давления. При некоторых методах измерения регистрируются значения меньше, чем атмосферное давление: -6 -8 мм рт. ст . Хотя проницаемость стенок капилляров для белков ограничена, их содержание в тканях составляет 30-40% всей массы циркулирующего в организме протеина. Коллоидно-осмотическое давление в интерстициальной жидкости достигает 10 мм рт. ст. Низкое гидростатическое давление и высокое коллоидно-осмотическое в интерстициальном пространстве способствуют фильтрации жидкости в ткань и поступлению туда веществ, растворенных в плазме крови. Градиенты давления в интерстиции вызывают перемещение растворов в нем и тем самым доставку необходимых продуктов к рабочим клеткам. Плазменные протеины, которые также поступают в межклеточную среду, эвакуируются в основном лимфатическими капиллярами. Давление в их просвете, по-видимому, мало отличается от атмосферного, т. е. по отношению к давлению крови близко к нулю. По мере продвижения лимфы по сосудам оно несколько увеличивается и на выходе из системы микроциркуляции может достигать 14-16 мм рт. ст. Хотя механизмы перемещения лимфы в микрососудах еще недостаточно ясны, показано, что большую роль играют сокращения крупных лимфатических сосудов (лимфангионов), имеющих развитую мышечную оболочку.

Наряду с обеспечением процессов обмена веществ между плазмой (лимфой) и рабочими элементами ткани система микроциркуляции выполняет и другие функции, жизненно необходимые для нормальной деятельности организма. Суммарная масса эндотелиальных клеток в организме взрослого человека достигает 1,5-2 кг , а величина клеточной поверхности вообще экстраординарна и, по-видимому, близка к 1000 м 2 . На этой обширной поверхности протекает ряд важнейших биохимических реакций, например превращение неактивной формы ангиотензина I в активную - ангиотензин II. Конвертирующий фермент синтезируется эндотелиальными клетками (особенно в микрососудах легких) и затем экспонируется на их поверхности. С помощью эндотелия капилляров дезактивируются биогенные амины - норадреналин, серотонин; на эндотелии сорбируется практически весь циркулирующий в плазме гепарин и другие биологически активные молекулы. Чрезвычайно важна роль эндотелия в синтезе простагландинов, особенно PGI 2 (простациклина), который поддерживает тромборезистентность эндотелиальной поверхности. Таким путем, а также благодаря синтезу эндотелием ряда факторов гемостаза и фибринолиза достигается тесная функциональная связь между микроциркуляцией и системой свертывания крови (см. Свертывающая система крови ). Эндотелиальные клетки синтезируют также большой класс молекул соединительной ткани - гликозаминогликаны, коллагены, фибронектин, ламинин и др. Обширный спектр клеточных рецепторов на эндотелиальной поверхности обеспечивает избирательную адсорбцию веществ и регуляцию специфических реакций эндотелиальных клеток.

Местные или генерализованные расстройства микроциркуляции возникают практически при всех заболеваниях. В соответствии с функциональными свойствами системы микроциркуляции эти расстройства проявляются комплексом различных синдромов. Так, при шоке разной этиологии ведущее патогенетическое значение приобретают явления гипоперфузии ткани, т.е. недостаточности капиллярного кровообращения, и агрегация эритроцитов - образование их конгломератов разной величины и плотности. Нарушения проницаемости стенок микрососудов для жидкости и белка, как и лейкоцитарная инфильтрация в очаге острого воспаления, является результатом специфического реагирования микроциркуляции в условиях сложного баланса медиаторов: гистамина, серотонина, системы комплемента, производных арахидоновой кислоты, активных форм кислорода и других (см. Воспаление ). Стойкое сокращение резистивных микрососудов - артериол, и структурные трансформации их стенок служат эффекторным механизмом развития гипертензионного синдрома. На уровне микроциркуляции и при ее непосредственном участии развиваются такие тяжелые состояния, как синдром диссеминированного внутрисосудистого свертывания (см. Тромбогеморрагический синдром ). При развитии патологических состояний синдромы микроциркуляторных расстройств часто комбинируются в различных сочетаниях и проявляются с разной интенсивностью.

Методы изучения микроциркуляции включают, помимо традиционного гистологического исследования, изучение с помощью электронного микроскопа, а также прижизненную микроскопическую диагностику нарушений кровотока (изучение капилляров ногтевого валика, конъюнктивы, десны, слизистых оболочек). В офтальмологии широко используется микроскопия сосудов глазного дна, позволяющая при введении в кровь люминесцентных индикаторов оценивать не только внешний вид, но и проницаемость сосудов. С этой целью применяют также подкожную пробу Лендиса - определение проницаемости капилляров по величине фильтрации жидкости и белка из капиллярной крови в условиях повышенного гидростатического давления. Индикатором состояния водного баланса в тканях может служить величина интерстициального давления. Для суммарной оценки тканевого кровотока, экстракции из крови и клиренса различных веществ все более широко применяют радионуклидные методы. В клиническую практику внедряют вискозиметры для изучения агрегатного состояния крови при различных скоростях сдвига. В медико-биологических экспериментальных исследованиях методические возможности изучения микроциркуляции более обширны и информативны. Практически все важнейшие параметры, отражающие функции системы микроциркуляции , доступны для количественного анализа.

Библиогр.: Джонсон П. Периферическое Кровообращение, пер. с англ., М. , 1982; Куприянов В.В. Система микроциркуляции и микроциркуляторное русло, Арх. анат., гистол. и эмбриол., т. 62, № 3, с. 14, 1972; Куприянов В.В. и др. Микролимфология, М. , 1953, библиогр.; Левтов В.А., Регирер А. и Шадрина Н.X. Реология крови, М. , 1982, библиогр.; Орлов Р.С., Борисов А.В. и Борисова Р.П. Лимфатические сосуды, Л., 1983; Руководство по физиологии. Физиология кровообращения. Физиология сосудистой системы, под ред. П.Г. Костюка, с. 5, 307, Л., 1984. Сосудистый эндотелий, под ред. В.В. Куприянова и др., с 44, Киев, 1986; Чернух А М. , Александров П.Н. и Алексеев О.В. Микроциркуляция , М. , 1975, библиогр.

Микроциркуляторное русло представляет собой сложно организованную систему, которая осуществляет обмен между кровью и тканями, необходимый для обеспечения клеточного метаболизма и удаления продуктов обмена. Система микроциркуляции является первым звеном, которое вовлекается в патологический процесс при различных экстремальных ситуациях. В микроциркуляторном русле выделяют звено притока и распределения крови, к которому относят артериолы и прекапиллярные сфинктеры, обменное звено, образованное капиллярами, депонирующее звено, состоящее из посткапиллярных сосудов и венул, обладающее емкостью, в 20 раз большей, чем артериолы, дренажное звено - лимфатические капилляры и посткапилляры.

Патология микроциркуляторного русла включает сосудистые, внутрисосудистые и внесосудистые изменения. Сосудистые изменения, обозначаемые как "ангиопатия", представлены нарушениями толщины, структуры и формы сосуда, вли я ющими на его проницаемость и транскапиллярный обмен. Внутрисосудистые изменения проявляются прежде всего в различных нарушениях реологических свойств крови, агрегации и деформации ее клеточных элементов. При их агрегации с сепарацией плазмы крови (сладж-феномен) снижается скорость кровотока, происходит закупорка артериол, что приводит к появлению плазматических капилляров, лишенных эритроцитов и не обеспечивающих полноценный транскапиллярный обмен. Подобные нарушения возникают при ДВС-синдроме, шоке различного происхождения, острых инфекционных процессах, коагулопатии потребления.

Внесосудистые изменения выражаются развитием периваскулярного отека, геморрагий и приводят к лимфостазу, запустеванию и регенерации лимфатических капилляров. Уровень микроциркуляции является ключевым в сердечно-соосудистой систе ме, тогда как остальные уровни призваны обеспечивать его основную функцию - транс капиллярный обмен. Жидкая часть крови, растворенный в ней кислород и вещества, неоходимые для метаболизм тканей, выходят из сосудистого пространства в системе капилляров. Этот транспорт осуществляется по законам диффузии и определяется градиентом внутри- и внесосудистого гидравлического давления, который способствует экстравазации жидкости, и градиентом внутри- и внесосудистого онкотического давления, который обеспечивает задержку жидкости в сосудистом русле и возврат в него межтканевой жидкости. В соответствии с соотношением этих градиентов происходит диффузия жидкости в артериальной части капилляра и ее реабсорбция - в венозной. При среднем капиллярном давлении, равном 20 мм рт. ст., давление в артериальном конце капилляра достигает 30 мм рт. ст., в венозном - 15 мм рт. ст. Так как гидравлическое давление в тканях составляет 8 мм рт. ст., то фильтрационное давление в артериальном колене капилляра равно 22 мм рт. ст., в венозном - 7 мм рт. ст. Разница онкотического давления между кровью и тканями составляет 15 мм рт. ст., поэтому превышение гидравлического давления над онкотическим в артериальном конце капилляра обеспечивает выход жидкости за пределы сосуда, а превышение онкотического давления над гидравлическим в венозном конце порядка 8 мм рт. ст. приводит к возврату жидкости в кровеносное русло.

Так как онкотическое давление крови в нормальных условиях является относительно постоянной величиной, то детерминантой интенсивности транскапиллярного обмена и соответственно обеспечения нутритивных потребностей тканей является капиллярное гидростатическое давление, а его установление и поддержание - та основная задача, которую решают остальные отделы сердечно-сосудистой системы. При рабочей гиперемии на фоне расширения резистивных сосудов и увеличения скорости потока крови возрастает давление крови в капиллярах с усилением фильтрации крови; это сопровождается возрастанием показателя гематокрита, что обеспечивает адекватное снабжение тканей кислородом. В условиях покоя возрастание тонуса резистивных сосудов сопровождается уменьшением притока крови, снижением капиллярного давления, усилением реабсорбции тканевой жидкости, уменьшением гематокрита и превращением части капилляров в плазматические, то есть лишенные эритроцитов.

Капиллярное гидравлическое давление далеко не всегда является отражением системного давления крови и в патологических ситуациях может изменяться независимо от изменений уровня АД. Паралитическое расширение артериол приводит к возрастанию капиллярного давления даже на фоне сниженного АД, следствием чего будет усиленная экстравазация жидкой части крови, ее сгущение и прогрессирующее нарушение периферического кровообращения. Если в нормальных условиях величина капиллярного давления связана прежде всего с тонусом прекапиллярных резистивных сосудов, регулирующих приток крови, то в патологических на первое место может выступать затруднение оттока крови из капилляров в силу сокращения или механического сдавления посткапиллярных отводящих сосудов - венул и вен. Подобный эффект отмечают при переходе шока, в частности кардиального, из обратимой фазы в необратимую, когда на фоне расширенных артериол спазм посткапил лярных резистивных сосудов приводит к возрастанию капиллярного давления, фильтрации жидкой части крови и ее сгущению с последующим резким нарушением микроциркуляции.

В системе микроциркуляции важнейшую роль в поддержании перфузии тканей играют реологические свойства крови , ее "текучесть". Всякой жидкости свойственно такое понятие, как "вязкость", поскольку столб жидкости перемещается по трубке не как единое целое, а отдельными слоями, которые сдвигаются относительно друг друга. Это так называемый ламинарный или слоистый ток, для которого характерно наличие прямой зависимости между движущей силой, которым является давление жидкости, и скорости ее передвижения. Вследствие наличия молекулярных сил сцепления между отдельными слоями потока развивается внутреннее трение, выраженность которого обусловливает вязкость жидкости. В результате отдельные слои будут смещаться с различной скоростью; наибольшая скорость характерна для центрального или осевого слоя, наименьшая - для пристеночного, скорость движения осевого слоя примерно в 2 раза больше, чем средняя скорость. В результате распределения скоростей отдельных слоев профиль потока приобретает параболическую форму.

При большой скорости потока после достижения критической точки поток теряет ламинарный характер и превращается в турбулентный, при котором утрачивается параллельный характер движения отдельных слоев, возникают завихрения. На их создание затрачивается значительная энергия, в результате чего при турбулентном характере потока теряется прямая зависимость между его скоростью и величиной давления. Разница в скорости движения отдельных слоев, отнесенная к расстоянию между ними, называют "скоростью сдвига". Чем выше внутреннее сопротивление, то есть вязкость жидкости, тем выше необходимые затраты энергии для его преодоления и приведения жидкости в движение, это усилие носит название "напряжения сдвига". Поэтому отношение величины напряжения сдвига к величине скорости сдвига является мерой вязкости жидкости.

Все жидкости делятся на однородные, или ньютоновские, и аномальные. Для однородных жидкостей характерна постоянная величина вязкости, не зависящая от сдвиговых усилий и скорости потока, тогда как вязкость аномальных жидкостей носит переменный характер и изменяется в зависимости от условий, в которых осуществляется их движение.

С биофизической точки зрения кровь - это гетерогенная многокомпонентная система корпускулярной природы, то есть суспензия, взвесь форменных элементов в коллоидном растворе белков, липидов и электролитов, которым является плазма крови. Перфузия тканей обеспечивается прохождением этой концентрированной суспензии твердых частиц через систему микрососудов, диаметр которых в отдельных участках меньше диаметра самих частиц. Несмотря на то что удельный вес крови приближается к удельному весу воды, кровь по реологическим свойствам резко отличается от последней. Это отличие проявляется прежде всего в системе микроциркуляции, поскольку в крупных сосудах кровь ведет себя как однородная жидкость. В микроциркуляторном русле, в условиях, где диаметр сосуда становится сопоставимым с размером форменных элементов крови, она приобретает свойства неоднородной жидкости. Наиболее выражены эти свойства на уровне капилляров, диаметр которых может быть даже меньше размера форменных элементов.

Основным проявлением свойств крови как неоднородной жидкости является зависимость ее вязкости от диаметра сосуда и скорости потока крови. При возрастании скорости сдвига или уменьшении диаметра сосуда в системе микроциркуляции вязкость крови снижается и достигает минимального значения на входе в капилляры, где скорость сдвига наибольшая. Напротив, при увеличении диаметра сосуда и снижении скорости сдвига вязкость крови возрастает. В связи с этим различают макрореологические свойства крови, то есть ее свойства в системе крупных сосудов, и микрореологические - свойства в системе микроциркуляции, особенностью которых является переменная вязкость, зависящая от характера потока крови. К числу важнейших факторов, определяющих микрореологические свойства крови, относятся гематокрит, деформируемость эритроцитов и их склонность к агрегации, структура потока крови.

В физиологических условиях наибольшее значение имеет гематокрит, между его величиной и вязкостью существует прямая зависимость, в диапазоне изменений гематокрита от 20 до 90% вязкость крови возрастает в 10 раз. Гематокрит крови не является постоянной величиной, для микрореологии крови характерно понятие "динамический или местный гематокрит", который может существенно отличаться от гематокрита в крупных сосудах.

Особенности движения крови в микрососудах описываются феноменом Фореуса-Линдквиста, в соответствии с которым гематокрит и соответственно вязкость крови снижаются по мере уменьшения сосудистого просвета от 300 мкм вплоть до капилляров. Так, при величине гематокрита в центральных сосудах, составляющей 50%, гематокрит в капиллярах неработающей мышцы - только 10%. Однако на уровне капилляров, диаметр которых примерно равен размеру эритроцитов или даже меньше его, отмечают феномен инверсии, гематокрит возрастает на 3–5 порядков и вязкость крови значительно повышается.

Другим фактором, определяющим изменчивость вязкости крови, является наличие обратной зависимости между скоростью сдвига (скоростью кровотока, отнесенной к диаметру сосуда) и вязкостью крови, что означает возрастание вязкости при замедлении потока крови. Зависимость между местным гематокритом, диаметром сосуда и скоростью сдвига определяется достаточно сложными гидродинамическими механизмами. При прохождении потока крови в системе микроциркуляции скорость движения в осевом токе значительно больше, чем в пристеночном, благодаря чему по оси создается разрежение, туда устремляются форменные элементы крови. Их содержание в слоях, удаленных от оси сосуда, значительно снижается, а пристеночный слой превращается в плазматический. Образование пристеночного плазматического тока является следствием осевой ориентации клеток и отделения или сепарации плазмы крови, чем больше толщина плазматического слоя, тем меньше местное значение гематокрита.

Поскольку в системе микроциркуляции скорость сдвига возрастает по мере уменьшения диаметра сосуда, то параллельно увеличивается толщина плазматического слоя и поэтому снижается гематокрит и вязкость крови. Однако на уровне капилляров сосудистый просвет почти полностью перекрывается форменными элементами, сохраняется только очень узкий слой плазматического тока между ними и стенкой капилляра, что приводит к значительному возрастанию местного гематокрита и вязкости крови.

Изменения вязкости крови при различных скоростях сдвига определяются также деформацией эритроцитов. В состоянии покоя эритроциты круг лой формы, а при движении со скоростью 6 мм/с вытягиваются и приобретают форму веретена. Эта способность зависит прежде всего от высокой эластичности мембраны эритроцитов, а ее снижение приводит к уменьшению текучести эритроцитов и возрастанию вязкости крови.

Зависимость между скоростью движения крови и ее вязкостью описывается понятием "структура кровотока", что определяется особенностями распределения и поведения эритроцитов в просвете микрососудов. Выделяют 3 типа структуры кровотока:

1-й тип отмечается в нормальных условиях при достаточно высокой скорости по тока. При этом эритроциты ориентированы по оси сосуда, перемещаются параллельными слоями вдоль стенки сосуда, а профиль скоростей отдельных слоев имеет параболическую форму с максимальной скоростью у оси и минимальной - возле стенки. Эритроциты мигрируют от стенок к центру сосуда, а у стенок образуется бесклеточный плазматический слой. Этот поток крови аналогичен ламинарному или слоистому потоку однородных жидкостей.

2-й тип структуры является переходным и наблюдается в микрососудах при снижении скорости потока крови и напряжения сдвига. При этом типе происходит значительное снижение градиента скорости движения отдельных слоев, профиль скоростей отклоняется от параболической формы к затупленной. Это создает условия для более хаотичной ориентации эритроцитов относительно оси сосуда, часть из них располагается не параллельно ей, а почти перпендикулярно. Изменяется также траектория движения эритроцитов от линейной до хаотичной, что в комплексе способствует повышению вязкости крови и возрастанию сопротивления кровотока.

3-й тип структуры потока крови наблюдается в наиболее мелких микрососудах, которые приближаются по размеру просвета к размеру эритроцитов. В результате каждый отдельный эритроцит занимает практически весь просвет сосуда и ток крови приобретает поршневой характер. Поэтому вязкость крови в капиллярах определяется главным образом деформируемостью эритроцитов, поскольку в ряде тканей просвет капилляров меньше диаметра эритроцита. Для того чтобы пройти подобный капилляр, эритроцит вытягивается в продольном направлении и приобретает эллипсоидную форму, в этом состоянии длина эритроцита может превышать его ширину в 2,2 раза. Однако и при этом эритроцит занимает только 80% просвета сосуда, сохраня ю щийся пристеночный плазматический слой предотвращает прямое взаимодействие форменных элементов с эндотелием сосудистой стенки.

Деформируемость эритроцитов настолько велика, что при их наружном диаметре 7–8 мкм они могут без повреждения проходить через отверстие диа метром 3 мкм. Это свойство эритроцитов определяется особыми вязкоэластическими свойствами их мембраны и текучестью внутреннего содер жимого, благодаря чему при прохождении через узкое отверстие мембрана вращается вокруг цитопла з мы, способствуя уменьшению потери энергии при преодолении препятствия и предотвращая возможность закупорки сосуда. Благодаря этому свойству эритроцитов кровь сохраняет текучесть даже при гематокрите, достигающем 98%.

При многих разнообразных патологических ситуациях - ишемии, сахарном диабете, стрессе, воспалении, а также при старении эритроцитов деформируемость их мембраны уменьшается, что затрудняет преодоление ими капиллярной сети. При этом эритроциты могут повреждаться и высвобождать в крови содержащиеся в них соединения, в частности АДФ, которая является активатором тромбоцитов и эндотелия. Все это приводит к значительным нарушениям микроциркуляции. Помимо этого, снижение вязкости крови при возрастании скорости потока крови в микрососудах связано с уменьшением склонности эритроцитов к агрегации. Одним из условий сохранения непрерывности потока крови является наличие в ней отдельных, не связанных между собой эритроцитов, которые могут перемещаться независимо друг от друга. Однако даже в нормальных условиях при замедлении потока крови происходит агрегация - слипание эритроцитов. Эти изменения обратимого характера, при восстановлении нормальной скорости движения крови эритроциты вновь разъединяются.

Однако в патологических условиях слипание эритроцитов значительно возрастает, в результате чего кровь превращается в сетчатую суспензию с низкой текучестью. В итоге кровоток может полностью прекратиться в сочетании с закупоркой капилляров, возникновением стаза в них. Развитию стаза способствует паралитическое расширение капилляров и замедление тока крови в них в условиях ишемии или при действии медиаторов воспаления. Особое значение для развития стаза имеет сгущение крови в результате параллельного возрастания проницаемости стенки капилляров. Соответственно возрастает гематокрит и повышается концентрация в крови белков, в частности фибриногена.

Внутрисосудистая агрегация эритроцитов является причиной "зернистого тока" в капиллярах, для его возникновения достаточно простого снижения скорости потока крови. Крайним проявлением усиленной внутрисосудистой агрегации эритроцитов является развитие состояния, называемого "сладжем", то есть закупорки капилляров эритроцитарными агрегатами, которое отмечают в ряде патологических ситуаций при проведении бульбарной микроскопии.

Суспензионная стабильность крови и степень агрегации эритроцитов
являются в значительной степени отражением их функционального состояния, прежде всего наличия на мембране отрицательного электрического заряда - "дзета-потенциала", благодаря чему происходит электростатическое отталкивание эритроцитов. При снижении этого заряда создаются условия для усиленной агрегации эритроцитов. Особое значение в этом процессе имеет соотношение содержания в плазме крови высоко- и низкомолекулярных белков - альбуминов и глобулинов, так как альбумины способствуют поддержанию электрического заряда мембраны эритроцитов, а глобулины, прежде всего фибриноген, снижают этот заряд и образуют мостики между отдельными эри троцитами, приводя к образованию их агрегатов. При высоком градиенте скоростей сдвига образование эритроцитарных агрегатов угнетается и создаются гемодинамические условия для их разрушения, тогда как при низкой скорости потока крови, прежде всего в венулах, происходит сближение эритроцитов, благодаря чему создаются предпосылки для их агрегации.

Агрегация эритроцитов возможна только с участием плазмы крови, поскольку для нее необходимо присутствие фибриногена, который образует мостики между отдельными эритроцитами. Поэтому интенсивность агрегации эритроцитов определяется не только их функциональным состоянием, но и концентрацией фибриногена в плазме крови. Фибриноген относится к белкам "острой фазы воспаления" и поэтому является одним из важнейших звеньев, который сопрягает воспаление и нарушения микроциркуляции.

Роль фибриногена в повышении вязкости крови определяется также тем, что он является важнейшим фактором агрегации тромбоцитов. В нормальных условиях тром боциты не принимают существенного участия в определении особенностей микроциркуляции ввиду относительно небольшого содержания в крови и малого размера частиц. Однако образование крупных тромбоцитарных агрегатов может сопровождаться эмболизацией мелких капилляров с полным прекращением локальной перфузии тканей. Этот механизм, в частности, является одной из причин развития нестабильной стенокардии, когда активация и агрегация тромбоцитов при разрушении атероматозной бляшки приводят к закупорке капилляров миокарда.

Важнейшим интегральным показателем полноценности микроциркуляции является уровень функциональной активности капилляров, которые могут находиться в трех состояниях: функционирующем, плазматическом и закрытом. Функционирующие капилляры содержат поток цельной крови - плазмы крови и форменных элементов, в плазматических при сохраненном просвете содержится только плазма крови, тогда как в закрытых капиллярах просвет практически отсутствует. При сужении при водящих артерий скорость кровотока в капиллярах снижается, вначале они превращаются в плазматические, а затем их просвет перестает определяться. Причиной наличия этих переходных состояний капилляров является изменение местного гематокрита в протекающей крови - если напряжение стенки капилляров превышает давление жидкости в них, капилляры переходят в закрытое состояние.

В.В. Братусь, Т.В. Талаева «Система кровообращения: принципы организации и регуляции функциональной активности»

Микроциркуляция (греч. mikros малый + лат. circulatio круговращение) - транспорт биологических жидкостей на уровне тканей организма: движение крови по микрососудам капиллярного типа (капиллярное кровообращение), перемещение интерстициальной жидкости и веществ по межклеточным пространствам и транспорт лимфы по лимфатическим микрососудам. Термин введен американскими исследователями в 1954 г. с целью интеграции методических подходов и сведений, которые относились преимущественно к капиллярному кровотоку (см. Кровообращение ). Развитие этого направления привело к представлениям о М. как о сложной системе, интегрирующей деятельность трех подсистем (отсеков, или компартментов): гемомикроциркуляторной, лимфоциркуляторной и интерстициальной. Основной задачей системы М. в организме является поддержание динамического равновесия объемных и массовых параметров жидкости и веществ в тканях - обеспечение гомеостаза внутренней среды. Система М. осуществляет транспорт крови и лимфы по микрососудам, перенос газов (см. Газообмен ), воды, микро- и макромолекул через биологические барьеры (стенки капилляров) и движение веществ во внесосудистом пространстве.

Центральное звено системы - кровеносные и лимфатические капилляры, самые тонкостенные сосуды диаметром от 3-5 до 30-40 мкм (рис. 1, 2 ). являющиеся важнейшим компонентом биологических барьеров. Стенки кровеносных капилляров, сформированные в основном из специализированных эндотелиальных клеток (рис. 3 ), допускают избирательное снабжение рабочих элементов ткани кислородом, ионами. биологически активными молекулами, плазменными протеинами и другими веществами, циркулирующими в крови. Лимфатические капилляры (см. Лимфатическая система ), стенки которых также образованы эндотелием, эвакуируют из тканей избыток жидкости, молекулы белка и продукты обмена клеток. Состояние капиллярного кровообращения определяют резистивные микрососуды - артериолы и прекапилляры, имеющие гладкие мышечные клетки. Последние обеспечивают изменения величины рабочего просвета сосудов и, следовательно, объема крови, поступающего в капилляры. Из капилляров кровь собирается в емкостные сосуды - посткапилляры и венулы, которые также включены в процессы транспорта веществ. Пути внекапиллярного кровотока (анастомозы, шунты) участвуют в кровенаполнении капилляров. Транспорт веществ через эндотелиальную выстилку кровеносных и лимфатических сосудов капиллярного типа (сосудистая проницаемость) осуществляется посредством межклеточных контактов, открытых и диафрагмированных фенестр и пор, а также системой плазмолеммальных везикул, или инвагинаций (рис. 4 ). Многочисленность структур, образованных клеточной мембраной (см. Мембраны биологические ), служит отличительным признаком эндотелиальных клеток. Основной движущей силой, доставляющей тканям кровь и обеспечивающей продвижение интерстициальной жидкости и лимфы, является пропульсивная деятельность сердца.

С функциональной точки зрения все транспортные процессы в системе М. взаимосвязаны и взаимообусловлены. Эта взаимосвязь достигается благодаря градиентам сил (давлений) и концентраций на уровне эндотелиальных барьеров, разделяющих компартменты, и в каждом из них. Кровь как сложная гетерогенная система корпускулярной природы имеет реологические свойства, существенно отличающие ее от других жидкостей. На условия гемодинамики в системе М. оказывают влияние не только структурные механизмы микроциркуляторного русла, но и агрегатное состояние крови, взаимодействие между форменными элементами и циркулирующей плазмой. Гемодинамические параметры в микрососудах тесно связаны с проницаемостью их стенок, а последняя отражает градиенты сил и концентрацию белков в интерстиции. В свою очередь, условия, существующие в интерстициальном окружении лимфатических капилляров, формируют механизмы лимфообразования и продвижения лимфы. М. как основная система, интегрирующая жизнедеятельность тканей, регулируется преимущественно местными механизмами контроля - медиаторным, миогенным. Нервные и гуморальные влияния реализуются на уровне гладкомышечного аппарата резистивных микрососудов и в сокращении эндотелиальных клеток. В деятельности системы М. очень эффективно проявляется принцип саморегуляции, в соответствии с которым изменения функциональных параметров в каждом из трех компартментов и на границах между ними существенно влияют на транспортные явления в соседних отсеках. Саморегуляторный механизм обеспечивает, в частности, защиту тканей от избыточного поступления и накопления жидкости. Недостаточность какого-либо звена этого механизма и невозможность ее компенсации приводит к тканевому отеку - одному из наиболее распространенных синдромов при многих патологических состояниях.

Основные параметры, характеризующие функционирование системы М., определяются условиями гемодинамики на уровне капилляров, проницаемостью их стенок, силами, обеспечивающими движение интерстициальной жидкости и лимфы. Скорость кровотока в капиллярах обычно не превышает 1 мм/с , причем эритроциты движутся несколько быстрее плазмы. Гидростатическое давление в сосудах капиллярного типа в разных органах регистрируется в диапазоне 18-40 мм рт. ст . Как правило, оно несколько превосходит коллоидно-осмотическое давление белков плазмы (19-21 мм рт. ст .), благодаря чему градиент давления через стенки капилляров направлен в сторону ткани и фильтрация жидкости доминирует над реабсорбцией ее в плазму. Избыточный объем поступающей в ткань жидкости реабсорбируется корнями лимфатической системы или используется на образование секретов, например в пищеварительных железах. Гидравлическая проводимость стенок кровеносных микрососудов,

т.е. проницаемость для воды, колеблется в зависимости от их характера (артериальные или венозные капилляры, венулы) и органной принадлежности. В капиллярах с непрерывным эндотелием (мышцы, кожа, сердце, ц.н.с.) она варьирует в пределах (1-130)× 10 -3 мкм/с× мм рт. ст . Величина проводимости фенестрированного эндотелия (почки, слизистая оболочка кишки, железы) обычно на 2-3 порядка выше. Другой важный параметр, характеризующий способность капиллярной стенки пропускать вещества, растворимые в воде, - коэффициент осмотического отражения - является безразмерной величиной и не превышает 1. Его значения особенно важны для оценки проницаемости эндотелия по отношению к белкам плазмы крови. В стенке капилляров коэффициент отражения белков типа альбумина составляет 0,7-0,9. Это означает, что проницаемость капиллярного эндотелия для макромолекул невелика; для ионов и небольших молекул значения коэффициента отражения близки к 0,1. Еще один параметр - коэффициент проницаемости для ионов К + , Na+ имеет величину порядка 10 -5 см/с . Для молекул средней массы (сахара, аминокислоты) он несколько меньше.

Величина гидростатического давления интерстициальной жидкости (в межклеточном пространстве) оценивается обычно как близкая к нулю, т.е. мало отличающаяся от величины атмосферного давления. При некоторых методах измерения регистрируются значения меньше, чем атмосферное давление: -6 -8 мм рт. ст . Хотя проницаемость стенок капилляров для белков ограничена, их содержание в тканях составляет 30-40% всей массы циркулирующего в организме протеина. Коллоидно-осмотическое давление в интерстициальной жидкости достигает 10 мм рт. ст. Низкое гидростатическое давление и высокое коллоидно-осмотическое в интерстициальном пространстве способствуют фильтрации жидкости в ткань и поступлению туда веществ, растворенных в плазме крови. Градиенты давления в интерстиции вызывают перемещение растворов в нем и тем самым доставку необходимых продуктов к рабочим клеткам. Плазменные протеины, которые также поступают в межклеточную среду, эвакуируются в основном лимфатическими капиллярами. Давление в их просвете, по-видимому, мало отличается от атмосферного, т. е. по отношению к давлению крови близко к нулю. По мере продвижения лимфы по сосудам оно несколько увеличивается и на выходе из системы М. может достигать 14-16 мм рт. ст. Хотя механизмы перемещения лимфы в микрососудах еще недостаточно ясны, показано, что большую роль играют сокращения крупных лимфатических сосудов (лимфангионов), имеющих развитую мышечную оболочку.

Наряду с обеспечением процессов обмена веществ между плазмой (лимфой) и рабочими элементами ткани система М. выполняет и другие функции, жизненно необходимые для нормальной деятельности организма. Суммарная масса эндотелиальных клеток в организме взрослого человека достигает 1,

5-2 кг , а величина клеточной поверхности вообще экстраординарна и, по-видимому, близка к 1000 м 2 . На этой обширной поверхности протекает ряд важнейших биохимических реакций, например превращение неактивной формы ангиотензина I в активную - ангиотензин II. Конвертирующий фермент синтезируется эндотелиальными клетками (особенно в микрососудах легких) и затем экспонируется на их поверхности. С помощью эндотелия капилляров дезактивируются биогенные амины - норадреналин, серотонин; на эндотелии сорбируется практически весь циркулирующий в плазме гепарин и другие биологически активные молекулы. Чрезвычайно важна роль эндотелия в синтезе простагландинов, особенно PGI 2 (простациклина), который поддерживает тромборезистентность эндотелиальной поверхности. Таким путем, а также благодаря синтезу эндотелием ряда факторов гемостаза и фибринолиза достигается тесная функциональная связь между М. и системой свертывания крови (см. Свертывающая система крови ). Эндотелиальные клетки синтезируют также большой класс молекул соединительной ткани - гликозаминогликаны, коллагены, фибронектин, ламинин и др. Обширный спектр клеточных рецепторов на эндотелиальной поверхности обеспечивает избирательную адсорбцию веществ и регуляцию специфических реакций эндотелиальных клеток.

Местные или генерализованные расстройства М. возникают практически при всех заболеваниях. В соответствии с функциональными свойствами системы М. эти расстройства проявляются комплексом различных синдромов. Так, при шоке разной этиологии ведущее патогенетическое значение приобретают явления гипоперфузии ткани, т.е. недостаточности капиллярного кровообращения, и агрегация эритроцитов - образование их конгломератов разной величины и плотности. Нарушения проницаемости стенок микрососудов для жидкости и белка, как и лейкоцитарная инфильтрация в очаге острого воспаления, является результатом специфического реагирования М. в условиях сложного баланса медиаторов: гистамина, серотонина, системы комплемента, производных арахидоновой кислоты, активных форм кислорода и других (см. Воспаление ). Стойкое сокращение резистивных микрососудов - артериол, и структурные трансформации их стенок служат эффекторным механизмом развития гипертензионного синдрома. На уровне М. и при ее непосредственном участии развиваются такие тяжелые состояния, как синдром диссеминированного внутрисосудистого свертывания (см. Тромбогеморрагический синдром ). При развитии патологических состояний синдромы микроциркуляторных расстройств часто комбинируются в различных сочетаниях и проявляются с разной интенсивностью.

Рассказать друзьям