Запуск программ самоисцеления и самовосстановления.

💖 Нравится? Поделись с друзьями ссылкой

Academy of Regenerative Medicine is a training, research, medical, recreational, regenerative and gerontology (rejuvenation) institution, founded in Swiebodzice, Poland in 2010. In a short period of time Academy of Regenerative Medicine gained worldwide fame and became one of the leading medical centers in Europe. Patients from 30 countries (the USA, Canada, Australia, Israel, EU, CIS, Asian and African countries) have already undergone successfully their treatment and regeneration in our center. The Academy of Regenerative Medicine is not only a leader in preventing and treating many chronic incurable and genetic diseases but the only center in the world in which the integrated method of body regeneration with the help of simple harmless natural techniques is implemented and widely used. A promising new direction in complementary and regenerative medicine was developed, proven and implemented in practice in our center.

The invaluable advantage of this technique is the rapid restoration, regeneration and rejuvenation of the body in so much that our patients in any condition and at any age almost completely stop taking any medications, including painkillers, food supplements. They also stop restricting their food and keeping to any diet. THEY LIVE A FULL LIFE WITHOUT DISEASES AND MEDICATIONS!

The Academy of Regenerative Medicine works on the basis of the author’s method of Aliaksandr Haretski «The method of human organ regeneration, biological body rejuvenation, integrated healing of chronic “incurable” diseases and aging with the help of regenerative medicine techniques».

You can get acquainted with the basic elements of our method on the official website of our Academy www.acadregmed.com We have posted lots of practical information there. You can learn how to effectively cleanse the body of harmful toxins and parasites, how to eliminate the main causes of diseases and boost the immune system. You can also learn how to launch the mechanisms of body regeneration and self-healing in sick people with various severe diseases.

OUR REGENERATION METHOD IS UNPARALLELED ANYWHERE ELSE IN THE WORLD!

Our Academy of Regenerative Medicine is the only health care institution in the world in which only harmless natural methods of treatment and our own know-how developments are used. It allows us to achieve such incredible results in treating many diseases. Our method, the only effective one for treatment of many incurable diseases, is YOUR LIFE WITHOUT DISEASES AND MEDICATIONS!

UNIQUE POSITIVE SIDE EFFECTS!

The uniqueness of our method is that it allows us to stop the aging process and replace the name of many “incurable diseases” with “curable diseases”. The use of this technique offers an opportunity to give people a new lease on life at minimal cost. It’s universal and harmless. It has virtually no contraindications. It can be effectively used not only for prevention and treatment of many diseases but also for body rejuvenation at any age. The positive side effect, which manifests itself as the regeneration and rejuvenation not only of the skin but also of the whole human body, means that this is the best place on earth to relax and improve your health and beauty. After undergoing treatment in our Academy, every person looks and feels healthy and many years younger without any plastic surgery. We invite you to see it for yourself!

PROFESSIONALISM AND QUALITY!

The Academy of Regenerative Medicine has earned high accolades and recognition from its patients all over the world owing to our highly professional specialists, our high level of customer service and the possibility of comprehensive disease treatment. The staff of our center speaks Polish, Russian, English and many other languages fluently and provides high-quality assistance to patients from any country.

REASONABLE PRICES!

The cost of our services, compared with the cost of services of other medical centers in European countries, the USA, Japan and even China, is tens or even hundreds of times lower than when using other methods of treatment of incurable diseases. Our prices are lower but the effectiveness is higher!

A HIGH QUALITY OF LIFE AFTER THE BODY REGENERATION!

The important advantage of our work is a high quality of life of our patients after their treatment in our center with healthy organs and rejuvenated cells in the whole body, with a strong immune system, without diseases and drugs.

THE SALUBRIOUS CLIMATE!

Our Academy is located in the foothills area in the south-western part of Poland. The main advantages of this region are clean air and a mild climate with favorable weather conditions all the year round.

COMFORTABLE ACCOMMODATION!

We offer comfortable self-catering accommodation with home atmosphere in well-equipped one bedroom and two bedroom apartments with a bathroom and a kitchen in our center. It allows our patients not to feel like staying in hospital and provides psychological comfort.

HOW TO CHOOSE A COURSE OF REGENERATIVE THERAPY CORRECTLY?

After getting acquainted with the information posted on our website many people think that we are wizards and within a week we can eliminate big problems that have existed for many years. Sometimes very quick fantastic results are achieved in our center - God works miracles, but this is an exception. In most cases, we and our patient must work hard and long hours with the help of God in order to achieve a goal. Our task is to cleanse the body and make it replace its old, sick and damaged cells with young and healthy ones. The regeneration process of the very damaged and weakened body is very time consuming. We can only recommend the right course of regenerative therapy for you. The choice always remains with the patient and depends on his faith, desires and possibilities! And thereby the result depends on your choice!

YOUR DESTINY LIES IN YOUR HANDS!

THE COST OF THE COURSE OF REGENERATIVE THERAPY!

In most cases, patients who come to our Academy are interested in treating only one organ, more affected by their diseases . But we are engaged in health improvement and regeneration of the whole body rather than its separate damaged parts.

A modern man strives to stay young and healthy as long as possible. Now, fortunately for us, we have such an opportunity thanks to Mr. Aliaksandr Haretski

  • People die not of old age, but of diseases. We have found a universal way how to get rid of chronic and incurable diseases and prolong people’s lives for long. Our method of whole body regeneration is not a theory. It is tested and successfully used in practice.

We offer various courses of regenerative therapy for the prevention, preservation, restoration and improvement of health, the use of which allows us:

    To do the full body cleanse, encourage the body to heal itself and halt the progression of many diseases. It may be said without exaggeration that it is the best way to regenerate the human body, prevent various diseases and stop the aging process: 13-30 - day programs.

    1+ to halt the progression of the disease or get rid of it in the case of mild and intermediate forms of «incurable» diseases: 30-60- day programs.

    1 and 2+ to get rid of diseases in the case of severe «incurable» and even genetic forms of diseases, to regain previously lost functions, to launch the process of regeneration and rejuvenation in elderly and seriously ill people, as well as patients who need organ transplants without any transplant surgeon only with the help of our method of whole body regeneration: a few courses of 30 – day or 60 – day programs or a 365 - day program.

The cost and duration of a course are determined individually for every patient by the specialists of the Academy and depend on the patient’s state of health. The basic prices on the basis of which the cost of services is calculated are shown below.

The Cost of Services in the Academy of Regenerative Medicine, Swiebodzice, Poland.

Programs of detoxification, body cleanse and disease prevention

Light 6-day Light 13-day Intensive 6-day
The cost of procedures 190x6=1140 eur 168x12=2016 eur 225x6=1350 eur
25x6=150 eur 25x13=325 eur 25x6=150 eur
38x6=228 eur 38x13=494 eur 38x6=228 eur
The cost of meals 19x4=76 eur 19x9=171 eur 19x4=76 eur
The costs of a body cleanse program +meals +accommodation in a standard room 1366 eur
(1 day–228 eur)
2512 eur
(1 day–193 eur)
1576 eur
(1 day–263 eur)
The costs of a body cleanse program +meals +accommodation in a lux room 1444 eur
(1 day–241 eur)
2681 eur
(1 day–206 eur)
1654 eur
(1 day–276 eur)

Programs for disease prevention, health improvement, body cleanse, organ regeneration, whole body regeneration, body rejuvenation, beauty therapy, rehabilitation and physiotherapy to restore the reserve capacity of the human body and achieve the highest sport results by athletes
13-day 20-day 30-day
The cost of procedures 223x12=2676 eur 193x18=3474 eur 168x26=4368 eur
The cost of accommodation in a standard room 25x13=325 eur 25x20=500 eur 25x30=750 eur
The cost of accommodation in a lux room 38x13=494 eur 38x20=760 eur 38x30=1140 eur
The cost of meals 19x9=171 eur 19x14=266 eur 19x20=380 eur
3172 eur
(1 day–244 eur)
4240 eur
(1 day–212 eur)
5498 eur
(1 day–183 eur)
3341 eur
(1 day–257 eur)
4500 eur
(1 day–225 eur)
5888 eur
(1 day–196 eur)

Programs for disease prevention, health improvement, body cleanse, organ regeneration, whole body regeneration, body rejuvenation, beauty therapy, rehabilitation and physiotherapy to restore the reserve capacity of the human body and achieve the highest sport results by athletes, for the elderly and for people with chronic and incurable diseases
60-day
(30 days of procedures)
90–day
(44 days of procedures)
The cost of procedures 148x30=4440 eur 148x44=6512 eur
The cost of accommodation in a standard room 20x60=1200 eur 20x90=1800 eur
The cost of accommodation in a lux room 33x60=1980 eur 33x90=2970 eur
The cost of meals 13x52=676 eur 13x78=1014 eur
The costs of a health improvement program +meals +accommodation in a standard room 6316 eur
(1 day–105 eur)
9326 eur
(1 day–104 eur)
The costs of a health improvement program + meals + accommodation in a lux room 7096 eur
(1 day–118 eur)
10496 eur
(1 day–117 eur)
180-day
(52 days of procedures)
365 day
(104 days of procedures)
The cost of procedures 148x52=7696 eur 148x104=15392 eur
The cost of accommodation in a standard room 20x180=3600 eur 20x365=7300 eur
The cost of accommodation in a lux room 33x180=5940 eur 33x365=12045 eur
The cost of meals 13x164=2132 eur 13x333=4329 eur
The costs of a health improvement program +meals +accommodation in a standard room 13428 eur
(1 day–75 eur)
27021 eur
(1 day–74 eur)
The costs of a health improvement program +meals +accommodation in a lux room 15768 eur
(1 day–88 eur)
31766 eur
(1 day–87 eur)

25% off accommodation when staying in the same room for 2 or more people.

В то же самое время, вместо привычного разбрасывания сил, времени и денег, можно очень обдуманно заниматься таким доступным делом, как самооздоровление. В систему самовосстановления человека одновременно войдут и профилактика болезней, и лечение уже существующих недугов.

Как запустить механизм самовосстановления организма

Любой человеческий организм обладает огромным потенциалом, позволяющим ему не только выживать, но и жить качественно, самостоятельно препятствуя развитию патологических процессов в теле. В переходные периоды жизни (раннем детстве, при гормональных перестройках или старости) защитные механизмы и ресурсы самовосстановления человека несколько ослабевают. На фоне неправильного питания, нерационального образа жизни, при производственных вредностях или экологических трудностях организм также все силы тратит на простое выживание, не имея запаса прочности для восстановления проблемных участков. А вот синтетические лекарственные средства, искусственные гормоны и бытовые антисептики просто-напросто отключают функцию самовосстановления человека, переключая организм на жизнь в стерильных условиях и ломая иммунную самозащиту.

Для того чтобы решить задачу, надо придерживаться шести простых правил:

  • Осознать, что внешние факторы - это провокация болезни, а готовность к ней кроется в самом человеке. Поэтому сопротивление недугу или выход из него возможны только при правильном и осознанном настрое.
  • Начинать день или любое дело в течение него необходимо с улыбки, расправив плечи и выпрямив спину. Положительные эмоции - залог успешного самовосстановления человека.
  • Радоваться своим даже маленьким достижениям и хвалить себя за них. Ощущение благодарности к себе за заботу о здоровье может мобилизовать существенные ресурсы, о которых человек даже и не подозревал.
  • Освоить практики расслабления, снятия внутреннего напряжения и мышечной зажатости, подключить к самовыздоровлению организма не только сознание, но и подсознательные установки.
  • Овладеть навыками простых гимнастик, самомассажа и пользоваться ими регулярно, приучая организм к четкому распорядку работы всех органов и систем.
  • Придерживаться основ рационального питания, избегая переедания, несбалансированной диеты или голодания.

Методы самовосстановления позвоночника

Позвоночник - основная опора всего тела, от здоровья которого зависит подвижность и гибкость тела, адекватность мозгового кровотока и нормальная работа внутренних органов. На Востоке считается, что основные потоки жизненной энергии распределяются вдоль позвоночного столба и, научившись управлять здоровьем позвоночника, можно держать в руках весь организм. А достичь этого можно несложными действиями, ускоряющими процесс самовосстановления человека.

Правила здоровья позвоночника

  • Следить за осанкой и тренировать мышечный корсет, укрепляя и растягивая связки. Это позволяет снизить нагрузку на позвоночник и предотвратить его преждевременное изнашивание, а также травматизм.
  • Своевременно расслаблять позвоночник и массажем помогать мышцам вокруг него получать достаточно кислорода и выводить токсины.
  • Правильно питаться, отодвигая дегенеративно-дистрофические изменения в костной и хрящевой ткани позвоночника.
  • Психологическими тренировками подкреплять все физические достижения и формировать у себя правильные установки, руководящие самовосстановлением позвоночника.

Самовосстановление зрения

Зрительный анализатор полноценно работает, только если рационально нагружаются все его части. Поэтому в основе реабилитации зрения собственными силами организма стоит восстановление физиологичных нагрузок на мышечный аппарат глаза. Это позволяет мышцам сбалансировано чередовать сокращение и расслабление, достаточно питать кровью все ткани глаза, стимулировать зрительный нерв и центр в затылочной доле головного мозга. При этом зрительные таблицы - это способ контроля достижений, а сама глазная гимнастика не дает блестящих результатов без правильного психологического настроя и мобилизации душевных и физически возможностей самовосстановления человека.

На сегодня наиболее прогрессивным физиологичным методом, который позволяет отказаться от очков и избежать операции, является , который сочетает психологический тренинг, глазную гимнастику с использованием коррекционных таблиц и основы акупунктурного самомассажа. Более подробно с методом можно познакомиться в книге М.С. Норбекова «Опыт дурака или ключ к прозрению».

Самовосстановление печени

Как заботиться о печени:

  • Избегать интоксикаций.
  • Не злоупотреблять лекарствами, придерживаясь принципов самооздоровления.
  • Соблюдать сбалансированную по жирам диету, не питаться всухомятку.
  • Тренировать мышцы брюшного пресса и конечностей, чтобы внезапные нагрузки не вызывали спазм желчевыводящих путей.
  • Поддерживать здоровье позвоночника, обеспечивая нормальное функционирование вегетативной нервной системы.

Добиваться максимальных результатов в физиологичном регулировании работы организма позволяет система самовосстановления человека М.С. Норбекова. В ней собраны и воедино связаны методы и приемы, проверенные временем и дающие оптимальную отладку здоровья, а также уверенность в своих силах. Положительного результата достигли сотни людей, обратившиеся в Центр М.С. Норбекова и воспользовавшиеся его методикой самовосстановления человека. Все это позволяет быть уверенным в положительном итоговом результате работы над своим здоровьем и гарантирует долголетие при сохранности качества жизни.

Печень лучше всего восстанавливает организм. Вместо образования рубцовой ткани после повреждения, печень заменяет старые клетки новыми. Процесс тоже быстрый. Даже после удаления 70% печени она может восстановиться в течение двух недель.

Восстановление эпителия кишечника

Каждый день кишечник выполняет тяжелую работу, переваривая пищу. Эпителий в кишечнике действует как барьер, отфильтровывая токсины при поглощении питательных веществ. Без этого микробы могли бы попасть в кишечник и стать причиной заболеваний. Чтобы сохранить защиту, организм заменяет старые клетки на новые. Скорость восстановления высока; весь эпителий полностью заменяется каждые пять-семь дней.

Образование костной ткани

Через несколько часов после перелома организм уже начинает восстанавливать сломанную кость, образуя тромб. Через неделю или две этот сгусток заменится образованием из коллагена. Через три недели организм добавит минералы в образование, чтобы оно затвердело и превратилось в новую кость. Как только кость полностью сформирована, на это уходит от трех до девяти лет, он принимает свою первоначальную форму.

Замена клеток кожи

Кожа состоит из нескольких слоев, а верхние слои клеток - это фактически мертвые клетки. От 30 000 до 40 000 из этих клеток покидают кожный покров каждый день, а новые растут на дне внешнего слоя.

Царапины на глазах быстро заживают

Роговица - внешний слой глаза - постоянно обновляется. Для образования нового эпителия - поверхностного слоя роговицы требуется всего одна неделя. При нанесении царапин этот процесс проходит еще быстрее. Организм способствует удалению поврежденных клеток, в то время как клетки из других областей накладываются поверх раны. Царапина полностью заживает в течение одного-трех дней.

Легкие восстанавливаются после курения

Крошечные волоски в легких, называемые ресничками, обычно выметают слизь и другие вещества из органа. Но когда человек дышит сигаретным дымом, эти волоски не могут двигаться, что приводит к образованию слизи. Между тем, дым вызывает воспаление и отек. Отказ от курения не позволит восстановиться органам от серьезного повреждения, но частично легкие могут восстановиться.

Мозг строит новые нейронные связи

Все больше ученые ссообщают о «нейропластичности», которая позволяет мозгу создавать новые связи между нейронами. Например, если область, которая имеет отвечает за речь человека, повреждена, другая часть мозга может взять на себя ее обязанности, поэтому у пациента с повреждением головного мозга может восстановиться некоторая способность говорить.

Жми «Нравится » и получай лучшие посты в Фейсбуке!

Читайте также:

Просмотрено

Средство которое улучшит иммунную систему и прочистит артерии

Медицина

Просмотрено

Лекарства, которые не стоит пить перед имплантацией зубов

Самоисцеление — скрытые резервы нашего организма тема, представляющая все больший интерес для современного человека. О скрытом механизме самооздоровления, о том, что нужно для восстановления защитных сил организма, причинах блокировки и способах включения его скрытых резервов читайте в нашей статье.

Что понимать под самоисцелением?

Самоисцеление – это природное свойство всех живых существ регенерироваться. В науке такая способность называется гомеостазом. Согласно этому природному свойству наш организм способен к самовосстановлению, самозащите, самоисцелению и даже самоомоложению. Другими словами, природный механизм гомеостаза возвращает организм в состояние равновесия усилий и энергозатрат.

Механизм самоисцеления

Ученые пока не раскрыли природный механизм запуска самоизлечения. Но мы сами убеждаемся в уникальной способности нашего организма к самоисцелению.

Каждый из Вас когда-нибудь получал небольшие порезы кожи. Если бы Вы могли видеть в микроскоп, что происходит с порезом, то удивились бы чудесному превращению его в небольшой шрам. В результате образования на месте пореза сгустка из кровяных клеток – тромбоцитов, поврежденные сосуды закупориваются, кровотечение останавливается. Деление клеток по краям раны происходит до тех пор, пока она не заживает полностью.

Подобное заживление и восстановление функций заболевших органов происходит и внутри нашего организма.

Резервные силы организма

Природа заложила в нас огромные резервные силы, способные восстановить поврежденный орган, вырастить новые клетки взамен погибшим, поддержать и восстановить нарушенные функции тела.

Когда мы заболеваем, внутри нас начинают происходить непонятные сложные процессы. Повышается температура тела, появляется кашель, рвота, понос. Таким способом происходит очищение организма от погибших клеток и чужеродных веществ.

Открываются те резервные источники энергии, которые излечивают больного.

Что же нам нужно для восстановления сил и снижения энергозатрат?

Чтобы понять это и помочь себе выздороветь необходимо поверить в то, что каждый из нас является частицей (клеткой) Вселенной, и обладает не ограниченными возможностями. Скрытые наши внутренние возможности обычно проявляются в экстремальных ситуациях и спасают нашу жизнь, а также подсказывают, как справиться с болезнью. Происходит это потому, что человек через подсознание связан с Вселенной и через нее, со всем человечеством – это уже доказанный учеными факт.

Болезнь является сигналом нашего подсознания о том, что какое-то наше действие или мысли, эмоции вступают в конфликт с законами Вселенной. Таким образом тело, заболевая, подсказывает нам о неверном поведении и нарушении законов окружающего Мира. Для того, чтобы излечиться от заболевания, нужно исправить ошибки мышления, и привести мысли в соответствие со Вселенскими законами.

Но мы привыкли верить только очевидному, материальному. Между тем, не подозреваем, какие огромные ресурсы скрыты внутри нас. Нам предстоит научиться их распознавать и ими управлять, тогда мы обретем здоровье, мудрость и силу.

Причины блокировки скрытых резервов нашего организма

Если человек живет в экологически чистой природе, ест натуральную пищу, не испытывает постоянных стрессов, не имеет вредных привычек и отягощенной наследственности, ведет в меру активный образ жизни, живет с добрыми намерениями и помыслами, то все процессы в его организме протекают эффективно, обеспечивая ему состояние полного здоровья.

Это значит, что в его организме достаточно положительной энергии, его кровь, лимфа, межклеточное пространство, печень, почки, кишечник и др. не содержат избыточного количества токсинов и микроорганизмов. А иммунная система способна обеспечить надежную защиту организму в случае попадания чрезмерного количества патогенных возбудителей, то есть в случае необходимости запускаются скрытые резервы.

Однако в современном цивилизованном мире основная масса людей живет в экологически неблагоприятной обстановке, питается продуктами, напичканными вредными химическими веществами, испытывает постоянные стрессы, стараясь заработать побольше денег, ведет малоподвижный образ жизни, мыслит с завистью, злостью, а порою с ненавистью.

Постоянное напряжение и зашлакованность организма отходами жизнедеятельности нарушают функции многих органов. Накапливающиеся токсины и шлаки блокируют скрытые силы организма, не позволяют иммунной системе выполнить свою функцию очищения.

С возрастом, когда двигательная активность человека снижается, нарастает негативное отношение к жизни, блокировка скрытых резервов усиливается, появляются уже не только функциональные, но органические поражения внутренних органов в виде хронических заболеваний. В таких условиях резервные силы организма не могут проявиться в полную силу.

Способы включения наших резервных сил

3 основных способа

Включение процесса самоисцеления — скрытых резервов нашего организма , зависит от многих факторов: наследования стереотипов воспитания, знаний о строении и развитии человеческого организма, жизненных привычек индивидуума, нравственных и интеллектуальных навыков его мышления и поведения, а также веры в здоровье и Высший разум.

Тем не менее, можно выделить 3 основных способа включения резервных сил организма, приемлемых почти для каждого из нас:

  1. Прекратить или ограничить воздействие химикатов на свой организм. Современные продукты питания содержат массу токсичных химических веществ. В быту и по уходу за своим телом и лицом мы также используем средства с присутствием химикатов токсичного воздействия. Накапливаясь в организме химикаты препятствуют функционированию клеток, загрязняют наше тело, нарушают сложные природные процессы гомеостаза, ведут к хроническим заболеваниям, в результате снижения самозащиты.
  2. Постепенно переходить на и . Ведь недостаток или отсутствие необходимых минералов, витаминов и других питательных веществ в пище, а также вредная еда (фастфуд, дрожжевая выпечка, сладости, газированные напитки и т.д.) препятствуют осуществлению естественного процесса самовосстановления и самообновления организма, загрязняя его токсинами и шлаками, нарушая обмен веществ.
  3. Признать и начать и негативного настроя, которые оказывают наиболее агрессивное разрушительное воздействие на оздоровительные и очищающие силы нашего организма. Для того, чтобы включить самоисцеление — скрытые резервы нашего организма , нужно привести свое мышление и поведение в соответствие со вселенскими законами. Внутренняя гармония будет транслироваться в гармонию вовне. Если Вы начнете внутри положительно меняться, то сможете излечиться от болезни, создадите вокруг себя благотворное пространство, которое положительно скажется на Вашем состоянии здоровья, окружении и достатке.

Разнообразие техник включения резервных возможностей организма

Существует много включения резервных возможностей нашего организма. Так, силу мысли , как главный наш скрытый резерв, доказал Роджер Сперри, ведущий нейропсихолог, получивший в 1981 году Нобелевскую премию (совместно с Торстен Визел и Дэвидом Хью-бел). Сперри доказал, что наши мысли материальны и все события в жизни являются следствием мыслеформ нашего внутреннего разума.

Обиды, жалость к себе, злоба, ненависть, зависть в виде соответствующей энергии, попадают в заполненную энергией Вселенную, и возвращаются к нам, формируя болезни, ссоры, нищету, катастрофы и др.

А вот чистота наших мыслей и желаний, позитивный настрой повышают нашу и формируют хорошие события в жизни. Поэтому это самый эффективный метод включения наших внутренних резервов.

Самовнушение считают сильнейшим резервом человека дагестанский философ и врач-психолог Хасай Алиев и профессор венской клиники Зональд Вельд (еще в середине девятнадцатого столетия).

Исследования доказали, что с помощью самовнушения можно вызывать определенные изменения в организме: не только излечивать себя, но и загонять в болячки.

Более того ученные советуют разговаривать со своей клеткой ДНК, в которой хранится вся информация о нас и нашем роде. Если что-то Вас не устраивает, можете внести изменения в свою ДНК.

Между тем, не оспорим один факт — каждый из нас может запускать свои резервы в повседневной жизни и в сложных ситуациях, если не лениться и верить в свои скрытые возможности.

Как научиться чувствовать и правильно пользоваться скрытыми своими силами

  • Мотивировать себя, то есть постоянно поддерживать .
  • Правильно формулировать свои цели (выздороветь, улучшить отношения с близкими людьми, раскрыть свое предназначение в жизни и т. д.).
  • Последовательно и настойчиво работать над своим Я. Контролировать свои мысли и эмоции, посылаемые в Мир.
  • Регулярно изучать необходимую литературу и опыт исследователей.
  • Помочь своим целительным силам : правильный режим питания, еженедельное голодание, умеренная физическая активность, закаливание и др.
    Пусть Вас вдохновят примеры выживания и излечения, представленные в видеоролике «Самовнушение, эффект плацебо, самоисцеление».

Желаю Вам здоровья и настойчивости в самооздоровлении!

Материаловедение

Н.Н. Ситников 1, 2 , И.А. Хабибуллина 1 , В.И. Мащенко 3

1 ГНЦ ФГУП «Центр Келдыша» (Россия, Москва)

2 Национальный исследовательский ядерный университет «МИФИ» (Россия, Москва)

3 Московский государственный областной университет (Россия, Москва)

Аннотация. Данный обзор посвящён механизмам получения эффектов самовосстановления исходных свойств или каких-либо характеристик в различных искусственно созданных материалах, таких как: полимеры, керамики, металлы, композиционные материалы и т.д. Кратко рассмотрены химические и физические процессы, обуславливающие эффекты самовосстановления, а также приведены примеры и экспериментальные прототипы самовосстанавливающихся материалов.

Ключевые слова: самовосстановление, самозалечивание, самозаживление, полимеры, керамики, цементы, бетоны, металлы, композиционные материалы.

Self-healing materials: an overview of self-healing mechanisms and their applications

Abstract. This review is devoted to the mechanisms of obtaining self-healing effects of the original properties or any characteristics in various artificially created materials, such as: polymers, ceramics, metals, composite materials, etc. The chemical and physical processes causing effects of self-restoration are briefly considered. Examples and experimental prototypes of the self-repairing materials are given.

Key words: self-restoring, self-healing, polymers, ceramics, cements, concretes, metals, composite materials .

Выпуск

Год

№1(9)

2018

Ситников Н.Н. , Хабибуллина И.А. , Мащенко В.И. Самовосстанавливающиеся материалы: обзор механизмов самовосстановления и их применений // Видеонаука: сетевой журн. 2018. №1(9). URL: (дата обращения 1.04.2018).

Самовосстанавливающиеся материалы: обзор механизмов самовосстановления и их применений

Введение

Самовосстанавливающиеся («самозалечивающиеся») материалы – это искусственно созданные вещества или системы, способные автоматически и автономно частично или полностью восстанавливать исходные характеристики после причиненных им повреждений. В идеале процессы восстановления должны происходить без какого-либо внешнего вмешательства, особенно человека . Самыми выдающимися самовосстанавливающимися материалами являются биологические материалы, которые проявляют способность к самовосстановлению и регенерации своих функций после получения внешних механических повреждений, и именно по отношению к ним применимы термины самозалечивающиеся или самозаживляющиеся материалы. В биологических системах самовосстановление может происходить как на уровне единичных молекул (например, восстановление ДНК), так и на макроуровне: срастание сломанных костей, заживление поврежденных кровеносных сосудов и т.д. Эти процессы знакомы всем, однако материалы, изготовленные человеком, в большинстве случаев не обладают подобной способностью к самовосстановлению (хотя бы потому, что «живыми» они не являются). Искусственные «самозалечивающиеся» материалы открыли бы огромные возможности, в особенности в тех случаях, когда в труднодоступных зонах на как можно более длительный срок необходимо обеспечить надежность материалов.

Способность искусственных материалов к самовосстановлению каких-либо свойств может позволить увеличить их срок службы, снизить затраты на поддержание их в рабочем состоянии и ремонт, а также повысить уровень безопасности конструкции или изделия в целом. По этой причине самовосстанавливающиеся материалы в настоящее время составляют предмет одной из самых исследуемых областей материаловедения .

Самовосстанавливающиеся материалы в зависимости от механизма запуска процессов самовосстановления могут быть разделены на два различных класса: автономные и неавтономные. При автономном самовосстановлении импульсом для запуска каких-либо процессов восстановления является само повреждение, и материал способен частично или полностью восстановить свои исходные характеристики без какого-либо дополнительного внешнего воздействия. Для неавтономных механизмов самовосстановления требуется внешнее инициирование, например, повышенная температура или свет. Механизмы самовосстановления искусственных материалов подразделяются на «внешние» и «внутренние» по способу организации процессов «самозалечивания». «Внешние» механизмы самовосстановления основаны на неких внешних, специально внедренных в матрицу основного материала восстанавливающих компонентах, например, микрокапсул с залечивающими веществами, а «внутренние» механизмы самовосстановления не требуют наличия каких-либо дополнительных восстанавливающих составов.

Самовосстанавливающиеся материалы представляют собой широкий класс веществ и могут быть подразделены на «чистые» материалы (полимеры, керамики, цементы и металлы) и композиционные материалы и системы, которые представлены в различных комбинациях (армированные материалы, капсулированные материалы, системы с полыми и заполненными волокнами, сосудистые системы, слоистые материалы, сэндвичные панели с жидкими реагентами и т.д.) .

В представленном обзоре рассмотрены литературные данные, изданные по проблеме создания самовосстанавливающихся материалов, основным механизмам самовосстановления и примерам их практической реализации.

2. Обзор и обсуждение механизмов самовосстановления искусственных материалов

Концепция «самозалечивающихся» искусственных материалов появилась относительно недавно, несколько десятилетий назад, но благодаря современному развитию технологий материаловедения и открывающимся перспективам применения материалов, способных самовосстанавливать свои исходные характеристики после повреждений, это направление материаловедения продолжает привлекать научное сообщество и переживает бурное развитие. Сложный характер процессов, участвующих в самовосстановлении исходных характеристик материалов, требует понимания многоуровневых молекулярных, микроскопических и макроскопических процессов. В настоящем обзоре будут рассмотрены основные механизмы получения эффектов самовосстановления в различных веществах, а также их использование для создания прототипов «самозалечивающихся» материалов и композитов на их основе.

В англоязычном научном сообществе для материалов, проявляющих эффекты самовосстановления, в качестве их популяризации по аналогии с биологическими объектами используют термин «self-healing materials», что в прямом переводе звучит как «самозалечивающиеся» или «самозаживляющиеся» материалы и подразумевает восстановление исходной структуры материала. В прямом переводе термины «самозалечивающиеся» или «самозаживляющиеся» не совсем корректно отражают суть происходящих явлений в «неживых» органических и неорганических материалах, но дают хорошее объёмное (общее) представление об итоговом макроскопическом эффекте. В русскоязычной научной литературе на наш взгляд более корректно использовать термин – самовосстановление, однако данный термин требует подчёркивания параметров или характеристик, которые были восстановлены после деструкции. Поэтому в данном обзоре авторы будут использовать термин «самозалечивание» при общем описании соответствующих эффектов, а самовосстановление при конкретном упоминании восстанавливаемых свойств.

2.1. Самовосстанавливающиеся полимерные материалы

Требования современного материаловедения таковы, что зачастую самовосстановление в искусственных материалах, и в частности в полимерах, наиболее востребовано в случаях механических повреждений различного масштабного уровня:

    в микротрещинах, в непосредственной близости к тому месту, где межмолекулярные связи были повреждены;

    в макротрещинах, (должны быть сформированы условия для заполнения трещины «залечивающим» веществом);

    в участках с разъединенными поверхностями (необходимы условия для их соединения).

С макроскопической точки зрения вызванное механическим воздействием повреждение уровня микротрещины может привести к повреждению более широкого масштаба, так что «самозалечивание» микротрещин становится надежной защитой от образования макротрещин и является наиактуальнейшей задачей полимерного материаловедения.

Самовосстановление механических повреждений в полимерных системах может быть достигнуто, как за счет использования ковалентных связей, так и с помощью нековалентных взаимодействий. В первом случае используются различные реакции сшивания, Дильса-Альдера и другие. Нековалентное заживление может быть реализовано за счет образования водородных связей и комплексных соединений, ароматического взаимодействия (π-π-взаимодействия), ионного взаимодействия, сил Ван-дер-Ваальса и других нековалентных взаимодействий. Для заживления могут быть также использованы различные золь-гель процессы. Изменение вязкости при изменении скорости сдвигового течения некоторых олигомерных и полимерных материалов может при определенных условиях придавать им характеристики самовосстановления .

Реакции сшивания могут быть самоинициированы или вызываться облучением и механическим воздействием на специально введенные низкомолекулярные соединения или на реакционные группы, связанные с основной цепью макромолекулы.

Примером залечивания с помощью ковалентного сшивания является использование реакций, приводящих к формированию устойчивых связей между ацилгидразиновыми группами на концах макромолекул полиэтиленоксида (ПЭО). Фотографии, иллюстрирующие самозаживляющие свойства геля модифицированного ПЭО, показаны на рисунке 1 . Два образца геля были окрашены (один – сажей, другой – родамином) и разрезаны. Далее половина образца, окрашенного сажей, была приведена в контакт с половиной, окрашенной родамином. После семи часов при комнатной температуре эти две половины соединились в единый достаточно прочный материал. .

Рисунок 1. Фотографии самовосстанавливающегося геля ПЭО: (а, б) каждый из образцов разделен пополам, (в, г) половинки разноокрашенных образцов соединили вместе, (д) попытка деформирования образца пинцетом через 7 часов после соединения половинок .

Реакции циклоприсоединения Дильса-Альдера также могут быть использованы для реализации механизма самовосстановления в полимерных материалах (рисунок 2) . Такие реакции представляют собой согласованное присоединение 4+2, протекающее между 1,3-диеном и ненасыщенным соединением – диенофилом. Обычно диен содержит электронодонорный заместитель, а диенофил – электроноакцепторную группу. Менее распространён вариант, когда электронообогащённым соединением является диенофил . Реакция Дильса‑Альдера используется в таких специально модифицированных материалах, как эпоксидные смолы, полиакрилаты и полиамиды. Образование связей между диеном и диенофилом после их физического разрыва может стимулироваться внешним излучением на материал или повышением его температуры, однако чрезмерное повышение температуры может приводить к разрушению образовавшихся связей.

Рисунок 2. Схематическое изображение реализации механизма самовосстановления посредством реакции циклоприсоединения при облучении материала ультрафиолетовым излучением .

На рисунке 3 представлены фотографии, иллюстрирующие, как разрезанный полимерный материал при нагреве или под воздействием ультрафиолетового излучения восстанавливает свою целостность за счёт протекания реакций циклоприсоединения в сополимере бутилметакрилата и оксидиоалкилена, тем самым реализуя самовосстановление поверхности .

Рисунок 3. Фотографии самовосстановления поверхности полимера при реализации реакции циклоприсоединения: (а) исходный разрез, (б) нагрев до 140 °С в течение 2 минут, (в) нагрев до 140 °С в течение 5 минут – полное «залечивание» царапины .

В некоторых полимерах, где механические разрушения происходят за счёт гомолитического разрыва связей, с образованием свободных радикалов возможно протекание реакций автоматического самовосстановления. Для этого разъединённые концы цепочек с реакционными группами должны переместиться и прореагировать друг с другом прежде, чем образовавшиеся свободные радикалы вступят в другие реакции. Для эффективного самовосстановления свойств подобных материалов необходимо избегать взаимодействия свободных радикалов с кислородом. Если свободные радикалы провзаимодействуют с кислородом, они не смогут взаимодействовать с другими концами цепочек, и, таким образом, материал не сможет «самозалечиться». Например, строение полимерного комплекса тритиокарбоната позволяет осуществлять перегруппировку связей через образующийся промежуточный свободный радикал . Восстановление разорванных связей в тритиокарбонате осуществляется через мобильные группы со свободными радикалами и стимулируется ультрафиолетовым излучением .

Термопластичные полимерные материалы, в которых присутствуют ковалентные связи, способные к обратимым реакциям, также могут проявлять свойства «самозалечивания». В качестве примера можно привести полимеры с привитыми алкоксиаминовыми группами (Рисунок 4) . Хотя обратимость и синхронность этих реакций наряду с гидрофобными взаимодействиями, используемыми в таких термопластах, довольно эффективно способствуют заживлению, нет никакой гарантии, что механическое повреждение не приведет к разрыву C–C связей. При таких обстоятельствах данные материалы не смогут показать стабильного самовосстановления связей.

Рисунок 4. Схематическое изображение обратимого разрыва связей в алкоксиаминовой группе .

Большинство полимеров и полимерных систем, находящиеся выше температуры стеклования обладают способностью к частичному или полному самовосстановлению при соединении разъединённых поверхностей. Этот механизм самовосстановления хорошо стимулируется дополнительным нагревом. Также некоторые материалы, эксплуатируемые ниже температуры стеклования, могут быть залечены при помощи нагрева места повреждения.

Яркий пример такого автономного самовосстанавливающегося полимера – материалы на основе боросилоксанов, представляющие собой неньютоновские жидкости, в которых олигомерные силоксановые молекулы соединены координационными связями, способными к быстрому восстановлению после разрыва. После повреждения нужно просто прижать друг к другу поверхности разрыва, и материал восстановит разорванные связи (рисунок 5). Такие материалы способны в течение нескольких минут «самозалечивать» образующиеся проколы и трещины (рисунок 5) .

Рисунок 5. Фотографии двух полимеров на основе боросилоксана: (a) два полимера в исходном состоянии; (б) разъединённые полимеры; (в) соединённые полимеры; (г) «залеченный» при соединении полимер; (д) растянутый и (е) разорванный «залеченный» полимер [ВИДЕО].

Супермолекулярные (надмолекулярные) взаимодействия в большинстве случаев позволяют осуществить более быстрое восстановление связей, чем ковалентные связи. Однако такие материалы обычно не обладают хорошими механическими свойствами, являясь достаточно мягкими и подвижными, что ограничивает области их применения.

Как уже упоминалось выше, самовосстанавливающиеся материалы в зависимости от применяемого механизма инициирования и природы процессов самовосстановления разделяют на два различных класса: автономные и неавтономные. Автономные процессы самовосстановления в полимерных материалах в чистом виде наблюдаются в высокомолекулярных системах, а также при введении в полимерную матрицу капсул или иных структурных элементов (будет рассмотрено далее) с различными «залечивающими» реагентами, например эпоксидными смолами. Для запуска неавтономных процессов самовосстановления в полимерах требуются какие-либо внешние воздействия, например, повышенная температура или оптическое излучение.

Среди неавтономных механизмов самовосстановления можно выделить пять основных путей их реализации. Первый из механизмов самозалечивания основан на обратимых реакциях. Наиболее широко используемый процесс базируется на реакциях Дильса‑Альдера. Второй механизм неавтономного самовосстановления основывается на включении плавких термопластичных добавок в матрицу термореактивного материала. Нагревание позволяет перераспределить термопластичные добавки в микротрещины, предотвращая их разрастание. Третий и четвертый механизмы неавтономного самовосстановления реализуются за счёт динамических надмолекулярных связей и иономеров. Пятый механизм для достижения преимущественного внутреннего самозаживления основан на молекулярном распространении материала за счёт диффузии .

2.2. Самовосстанавливающиеся керамические материалы

Эффекты самовосстановления в керамических материалах проявляются не так обширно и ярко, как в полимерах. В керамиках в общих случаях возможно самовосстановление лишь небольших дефектов, размеры которых ограничиваются сотнями микрометров. Тем не менее «самозалечивание» микротрещин, вызванных механическим износом или тепловым напряжением, в керамических материалах позволяет заметно улучшить их эксплуатационные характеристики. Самовосстановление микротрещин в керамических материалах основано на процессах окисления составных частей керамической матрицы при высоких температурах. Такие эффекты самовосстановления наблюдаются в керамических материалах, содержащих фазы M n+1 AX n (МАХ-фаза), где М – переходный металл, А – элемент IIIA или IVA подгруппы периодической системы, Х – углерод или азот. В самовосстанавливающихся керамических материалах часто используются окислительные реакции, при этом объем оксида превышает объем исходного материала. В итоге микротрещины получаются заполненными окислами A-элемента, сформированными из составляющих МАХ-фазы во время воздействия высокой температуры в кислородосодержащей атмосфере. Как результат, продукты этих реакций из-за увеличения объема могут быть использованы для заполнения небольших трещин .

Например, в самовосстанавливающейся Ti 2 AlC керамике используется эффект заполнения трещины соединениями α-Al 2 O 3 и TiO 2 , образующимися при высокой температуре в воздушной среде (рисунок 6) .

Рисунок 6. Изображение полностью «залеченной» трещины: (а) после выдержки в печи при 1200 °С в течение 100 часов, (б) увеличенное изображение, (в) «картирование» по элементному составу соединений в «залеченной» трещине.

Ещё один из примеров «самозалечивания» керамики – самовосстанавливающее окисление SiC-керамики. Активный SiC наполнитель, внедренный в матрицу, окисляется проникающим кислородом, тем самым образованный SiO 2 полностью заполняет трещину .

2.3 Самовосстанавливающиеся металл ические материалы

В металлических материалах из-за их особых свойств достигнуть эффекта самовосстановления более затруднительно, чем в большинстве других классов материалов. Одним из препятствий является характер связи между атомами и их низкая подвижность при рабочих температурах. В основном дефекты в металлах «залечиваются» более легкоплавкими и пластичными фазами, введёнными в основную матрицу материала, или ускоренным формированием агломератов из фаз, выпадающих при определённых условиях из основного материала в местах дефектов. Расплавленные или выпадающие фазы могут заполнить дефект и остановить дальнейший рост разрушения . Механизм «самозалечивания», заключающийся в диффузии выпадающих веществ из перенасыщенного твердого раствора в дефектные места, может предотвратить образование пустот (рисунок 7) . Эффективность данного механизма самовосстановления зависит от температуры, приложенного напряжения, места дефекта, его ориентации в поле напряжений и границ зерна .

Рисунок 7. Иллюстрация механизма роста каверны и перемещения в неё атомов осадка из перенасыщенного твердого раствора .

Эксперименты «залечивания» повреждения с помощью выпадения фаз и ползучести каверн в сталях продемонстрировали динамические выпадения меди, нитрида бора (BN) или золота на поверхности «ползущей» каверны. Было продемонстрировано, что автономное восстановление повреждения при нагреве за счёт ползучести выпадающих фаз может быть достигнуто в железе, содержащем небольшое количество золота. При температуре 550 °C выпадающие атомы золота на свободной поверхности каверны приводят к заполнению поры и, в результате, к автономному восстановлению повреждения (рисунок 8) . Агломераты из выпавших частиц золота собираются в образованных полостях (кавернах), прежде чем каверны смогут объединиться в микротрещины вдоль границ зерна. Границы зерна и дислокации являются быстрыми маршрутами для транспорта атомов золота, растворённых в матрице железа, к возникшей каверне.

Рисунок 8. Изображения сплава Fe-Au после диффузии атомов золота по границам зерна при 550 °C и напряжении: (а, в) 117 MПa и (б, г) 80 MПa .

В некоторых металлических материалах также присутствуют механизмы «врождённого самозалечивания» за счёт пассивации поверхности, которые косвенно можно отнести к «самозалечиванию». Например, в таком химически активном металле как алюминий и большинстве сплавов на его основе поверхность металла в атмосфере достаточно быстро переходит в неактивное, пассивное состояние, связанное с образованием тонких и, в то же самое время, прочных поверхностных слоёв соединений, препятствующих коррозии. Таким образом, образовавшиеся участки с ювенильной поверхностью «самозалечиваются» защитной плёнкой.

2.4. Самовосстанавливающиеся цементирующие материалы

Цементирующие материалы существуют еще с Римской эпохи, а в современном мире бетон и его составляющая цемент являются одними из наиболее популярных строительных материалов. Процессом цементирования называют скрепление составных частей горной породы (песка, обломков известняков и др. пород) с растворёнными минеральными веществами. У этих материалов есть врожденная способность к самовосстановлению, о которой впервые сообщалось ещё в 1836 г. Учёные обратили внимание на то, что некоторые материалы, имеющие в своём составе минеральные компоненты, обладают природной способностью к «самозалечиванию» мелких трещин в условиях естественной среды.

Основные механизмы самовосстановления цементирующих материалов подразделяют на три основных типа: естественное или автогенное (реакции гидратации и карбонизации), биооснованное и активационное («самозалечивание» с помощью химических добавок, реакции с использованием зольной пыли, специальных расширяющихся реагентов, внедрённых GEO‑материалов и т.д.) .

Автогенное самовосстановление – врожденная способность цементирующих материалов к «самозалечиванию» трещин. Основная идея такого самовосстанавливающегося бетона состоит в добавке в него каких-либо минеральных компонентов, например, присутствующих в раковинах морских животных или иных активных веществ. Эта способность преимущественно обоснована дальнейшей гидратацией не гидратировавших цементных частиц и насыщением углекислотой гидроокиси кальция, доступ к которым раскрылся в процессе разлома. Именно минеральные компоненты влияют на склонность бетона к регенерации при взаимодействии с внешней средой. Будь то дождь или же искусственный полив, бетон активно взаимодействует с водой, а также с углекислым газом, находящимся в избытке в атмосфере Земли, наполняя трещины карбонатом кальция и формируя своеобразную корку, прочность которой не уступает прочности бетона до повреждения (рисунок 9). Цементирующие материалы в пресноводных системах могут автогенным образом «залечивать» трещины шириной до 0,2 мм за время 7 недель .

Рисунок 9. Изображения, иллюстрирующие автономное самовосстановление трещины в бетоне с минеральными наполнителями .

Способность самозаживления бетона может быть улучшена введением бактерий, которые могут вызывать образование карбоната кальция посредством их метаболической деятельности . Эти образования могут расти и способствовать более быстрому связыванию вершины трещины и эффективному «залечиванию» дефекта.

Было показано, что одним из перспективных подходов к самовосстановлению бетона является вживление в него специальных микрокапсул с бактериями, вырабатывающими известняк (биооснованное заживление). Например, было продемонстрировано вживление в материал бетона алкалофильных видов бактерий, споры которых запечатываются в специальные капсулы вместе с необходимым питательным веществом (молочнокислым кальцием). Выбранные опытным путем штаммы бактерий (например, Bacilli megaterium) крайне живучи и, пребывая в бетоне, могут годами оставаться в «спящем» состоянии, начиная свою активную жизнедеятельность только при попадании в капсулу кислорода или воды, что, собственно говоря, внутри бетона может произойти только в случае образование трещины. Первые лабораторные опыты показали, что бактерии действительно способны заделывать трещины кальцитом (рисунок 10). При этом исчезают как относительно крупные дефекты, так и микротрещины размером около 0,2 мм. Без «самозалечивания» такие микротрещины со временем способны разрастаться и привести к разрушению материала в целом .

Рисунок 10. Изображения, иллюстрирующие биооснованное заживление в бетоне .

Дополнительное самовосстановление цементирующих материалов может быть достигнуто посредством реакции определенных химических веществ (агентов) введённых в основную матрицу. Для размещения этих агентов разработаны различные схемы с включением специальных структурных элементов, таких как: капсулы, полые волокна и трубки, другие виды капилляров, устроенных по типу сосудистых систем. Капсулы или капилляры при повреждении высвобождают реакционные агенты, которые залечивают дефекты . В качестве реакционных агентов в таких системах используются различные кремнийсодержащие вещества, такие как силикаты щелочных металлов, различные формы оксида кремния и др.

3. Обзор и обсуждение самовосстанавливающихся композиционных материалов

Как уже было отмечено ранее, логичным решением улучшения характеристик самовосстановления различных материалов является разработка композиционных систем на их основе, в которые внедрены различные волокна, материалы с особыми свойствами или химические компоненты, позволяющие автономно или неавтономно уменьшить разрушение исходного материала и поспособствовать более быстрому и полному «залечиванию» дефекта .

Например, в матрицу полимера вводят какие-либо упругие волокна, которые после деформации поджимают границы разрушенной области полимера (рисунок 11), сведённые поверхности затем образуют связи и дефект «залечивается» по ранее описанным методам (автономное действие). Неавтономное самовосстановление реализуется путём введения в матрицу материалов с особыми свойствами, которые способны оказывать дополнительное влияние при внешнем воздействии, например, расширяться и тем самым уменьшать размер разрушенной области. В качестве подобных материалов могут выступать различные спутанные волокна и материалы с «эффектом памяти формы» (ЭПФ), расширяющиеся или сжимающиеся при повышении температуры, а также различные вещества, например, гели, способные в разы увеличиваться в размерах при определенном внешнем воздействии.

Рисунок 11. Схематическое изображение самовосстанавливающегося материала с волокнами .

В случае использования материалов с ЭПФ (полимеров или сплавов), им сначала придают «память» на требуемую исходную форму, далее их в исходном или деформированном виде вводят в полимерную матрицу. В дальнейшем, после разрушения или деформации полученного композитного материала, при последующем нагреве внедрённые материалы с ЭПФ «вспоминают» свою исходную форму и поджимают границы разрушенной области основного материала матрицы, которые затем «залечиваются» по ранее описанным механизмам.

Наиболее применяемым материалами с эффектом памяти являются сплавы на основе никелида титана (нитинола) . Существуют также и полимеры с памятью формы, которые возвращаются к исходной форме после воздействия на них температуры, света, электричества или магнитного поля . В качестве примера подобного композитного материала на рисунке 12 продемонстрировано укрепление матрицы из полиуретана микроволокнами, изготовленными из сплава с памятью формы. Такая схема композитного материала позволяет при появлении трещин, образовавшихся вследствие механической деформации, с помощью нагрева материала активировать восстановление формы нитей с ЭПФ, которые сжимают трещины в полимерной матрице и сводят их стенки, позволяя тем самым реализовать их «залечивание» .

Рисунок 12. Схема самовосстанавливающегося материала с нитями с ЭПФ: (а) зарождение трещины, (б) распространение трещины вглубь материала во время нагрузки, (в, г) «залечивание» трещины при нагреве .

Большое число работ посвящено изучению самовосстанавливающихся композиционных материалов, которым в основную матрицу внедряют тонкостенные инертные хрупкие капсулы с «залечивающим» веществом . При возникновении какого-либо дефекта, например, трещины, капсула ломается, «залечивающий» агент высвобождается и распространяется в трещину. При этом он либо взаимодействует с матрицей или внешней средой или смешивается с катализатором – отвердителем, заранее внедрённым в материал (отдельно от капсул), затвердевает и герметизирует трещину (рисунок 13) .

Рисунок 13. Схема самовосстанавливающегося композитного материала с заживляющими капсулами .

Подобная схема позволяет реализовать различные варианты строения капсулированного композитного материала:

  • капсулы с жидким (вязким) «залечивающим» веществом без катализатора в объеме матрицы; когда «залечивающее» вещество взаимодействует непосредственно с материалом матрицы или внешними факторами окружающей среды, например, атмосферой, в которой используется композит (рисунок 14, а);
  • капсулы с жидким (вязким) «залечивающим» веществом двух типов, которые затвердевают при смешении без дополнительного катализатора в теле матрицы (рисунок 14, б);
  • капсулы с жидким (вязким) «залечивающим» веществом и распределённым по объёму катализатором, который при контакте с «залечивающим» веществом вызывает его отверждение (рисунок 14, в);
  • катализатор, вызывающий отверждение «залечивающего» вещества, располагается на внешней стороне оболочки капсулы; при нарушении оболочки «залечивающее» вещество сразу взаимодействует с катализатором (рисунок 14, г);
  • многослойные капсулы с «залечивающим» веществом в защитной оболочке, в которой находятся также слои отвердителя, катализатора и др. (рисунок 14, д, е).

Рисунок 14. Схематическое изображение вариантов «самозалечивающегося» капсульного композитного материала (а-д) , схематическое изображение многослойной капсулы с «залечивающим» веществом (е) .

В качестве примеров подобных самовосстанавливающихся композитных материалов можно привести термореактивный эпоксидный полимер с микрокапсулами из дициклопентадиена и введенным в состав материала катализатором Граббса или микрокапсулами с полиэфирной смолой в оболочке из карбамидоформальдегидной смолы .

В качестве «залечивающих» жидких веществ, при смешении которых происходит отверждение для капсульной технологии хорошо подходят олигомеры или мономеры, содержащие в молекуле не менее двух эпоксидных или глицидиловых групп. Такие системы при сшивании превращаются в полимеры пространственного строения с распространённым названием – эпоксидные смолы.

Главным недостатком процесса с внешним инициированием самовосстановления посредством внедрения восстанавливающих капсульных компонентов является возможность лишь однократной «регенерации».

Развитие технологий капсульных систем для устранения проблемы однократного «залечивания» направлено на встраивание в материал матрицы вместо капсул полых волокон (капилляров) с жидкими наполнителями . Основной принцип «залечивания» в подобных системах аналогичен композитам с капсулами и реализуется в соответствии с похожими схемами (рисунок 15) . В дополнение к схемам реализации можно отнести возможность различного 2D и 3D плетения капилляров для повышения способности композита к самовосстановлению.

Рисунок 15. Схематическое изображение самовосстановления капиллярного композитного материала .

Самовосстанавливающиеся системы с полыми волокнами также полностью не решают проблему получения многоразовости эффекта «самозалечивания», связанную с тем, что компоненты, обеспечивающие заживление подобного композитного материала, расходуются и не поступают многократно в необходимом количестве. Следовательно, дальнейшее развитие этой технологии связано с обеспечением подвода необходимых компонентов или их прокачкой (в случае двухкомпонентной жидкостной схемы), что напрямую отсылает к аналогии самозалечивания биологических тканей.

В качестве примера, демонстрирующего сложность самозалечивания биологических тканей, приведём рану кожи. У нашей кожи, благодаря кровеносным сосудам, есть замечательная способность заживлять и восстанавливать себя. Кожа состоит из 2-ух главных частей – наружного слоя (эпидермиса) и внутреннего, более толстого (дермы), богатого кровеносными сосудами и нервными окончаниями. После ранения образуется сгусток фибрина (белка, который составляет основу тромба при свертывании крови и остановке кровотечения), затем идут основные стадии залечивания, частично перекрывающиеся во времени, – воспаление, формирование временной гранулематозной ткани, реконструкция ткани; наконец, восстанавливается эпидермис (рисунок 16) .



Рисунок 16. Схема заживления кожи (а) и схематическое изображение «залечивания» композитного материала двухкапиллярной сетевой сосудистой системы (б) .

В настоящее время искусственным системам далеко до кожи и биологических аналогов, однако, подобная схема заживления уже начинает использоваться. По аналогии с сосудами живого организма она получила название «сосудистой системы». Главная её отличительная черта от вышерассмотренной схемы с волокнами состоит в том, что такая система требует наличия насосов для прокачки «залечивающих» компонентов по сети «сосудов». Также могут быть применены 2D и 3D сосудистые системы и различные плетения «сосудов». Самовосстановление происходит при одновременном разрушении волокон («сосудов») с различными реагентами, которые при смешении затвердевают подобно двухкомпонентным эпоксидным смолам (рисунок 16, б). Подобные схемы сложны в изготовлении и использовании, однако они продемонстрировали многократное заживление .

Многочисленные эксперименты показали, что ни сферическая капсула, ни полые структуры не являются идеальными для достижения высокой эффективности восстановления. Гораздо большая эффективность восстановления может быть достигнута при использовании удлиненных капсул с соотношением сторон 1:10. Дальнейшие исследования подобных самовосстанавливающихся систем на основе капсул и полых волокон, главным образом, сосредоточились на улучшении качества капсул и заключенных в капсулы реагентов .

Перспективным направлением создания самовосстанавливающихся систем считаются слоистые композиционные материалы («сэндвичные» панели), имеющие в своём составе слой или несколько слоёв, обладающие каким-либо механизмом «самозалечивания». В такой схеме каждый слой выполняет свою определённую функцию, а в общей системе слоистый композиционный материал способен минимизировать повреждения и восстанавливать свои исходные макрохарактеристики . Показательным примером может служить материал типа «сэндвич» с внутренним залечивающим слоем из химически активной жидкости. Созданная самовосстанавливающаяся «сэндвичная» панель представляет собой систему, в которой химически активное жидкое или вязкое вещество, расположено между двух листов из полимерных материалов . До тех пор, пока активное вещество на основе трибутилборана (tributylborane) остаётся между панелями, оно не затвердевает. Однако как только полимерную пластину повреждает что-то извне, активное вещество вытекает из образовавшегося дефекта и полимеризируется при контакте с кислородом воздуха, после чего практически мгновенно затвердевает, герметизируя образовавшееся отверстие всего за несколько секунд (рисунок 17). Таким образом, в отверстии практически мгновенно образуется прочная пробка . «Сэндвичные» панели могут включать различные твёрдые, вязкие и жидкие наполнители, которые при возникновении дефекта материала вступают между собой в реакции, образуя твёрдую фазу. Данная схема самовосстановления не является свойством какого-либо одного материала, а является характеристикой всей системы.

Рисунок 17. Стадийный механизм самовосстановления сэндвич панели (а), наглядное испытание по «самозалечиванию»: (б) вытекание «залечивающей» жидкости после повреждения и (в) восстановленный материал .

В подавляющем случаях в подобных слоистых или капсулированных материалах «залечивание» представляется как заполнение возникающих в материале несплошностей какой-то другой субстанцией, отличной от основного материала, иногда с совершенно отличными от матричного материала свойствами. На самом деле при этом происходит не восстановление исходных характеристик материала, а формирование нового материала с другой структурой и свойствами. Тем не менее, самовосстановление в большинстве случаев подразумевает восстановление объемной или поверхностной целостности изделия с одновременным частичным или полным восстановлением важных эксплуатационных свойств, таких как герметичность, прочностные характеристики, электропроводность, экстерьер и т.д.

Концепция самовосстанавливающихся слоистых композиционных материалов является широкой и может включать различные механизмы самовосстановления в одной системе, позволяя получать уникальные эффекты «самозалечивания», которые недостижимы в других материалах .

ЗАКЛЮЧЕНИЕ

В представленном обзоре были кратко рассмотрены основные механизмы самовосстановления повреждений в различных материалах и представлены примеры их реализации. Материалы, способные автономно определять и устранять повреждения на начальном уровне, обладают огромным потенциалом и возможностями применения, в особенности в тех случаях, когда в труднодоступных зонах необходимо обеспечить надежность материалов на как можно более длительный срок. Создание искусственных «самозалечивающихся» материалов всё ещё находится на ранней стадии развития, тем не менее, современные технологии уже помогли повысить долговечность и стойкость материалов, а сами материалы получили развитие и применение преимущественно в различных композитных системах. В настоящее время полимерные и цементирующиеся материалы и их композитные системы являются наиболее изученной категорией материалов в контексте способности к самовосстановлению. Исходя из открывающихся перспектив, большое количество академических и промышленных исследовательских организаций выступают с поддержкой работ по разработке новых самовосстанавливающихся материалов и исследованию кинетики и стабильности процессов «самозалечивания».

Нет сомнений, что с развитием и удешевлением технологий создания самовосстанавливающихся материалов они все чаще будут внедряться в производство с целью улучшения свойств и продления сроков эксплуатации необходимых человеку изделий и устройств.

Cписок литературы.

  1. Ghosh S.K. Self-Healing Materials: Fundamentals, Design Strategies, and Applications Edited by Swapan Kumar Ghosh. WILEY-VCH Verlag GmbH & Co, 2009, p. 306.
  2. Bekas D.G., Tsirka K., Baltzis D. et al. Self-healing materials: A review of advances in materials, evaluation, characterization and monitoring techniques. Composites Part B, 2016, № 87, 92-119.
  3. Абашкин Р.Е., Руднев М.О. Перспективы применения самовосстанавливающихся материалов. Сборник научных трудов XI-ой Международной научно-практической конференции «Современные инструментальные системы, информационные технологии и инновации»: в 4 томах. Ответственный редактор: Горохов А.А., 2014, т. 1, с. 25-28.
  4. Kessler M.R. Self-healing: a new paradigm in materials design. Proc. Inst. Eng. Part G J. Aerosp. Eng., 2007, № 221, pp. 479-495.
  5. Yang Y., Ding X., Urban M.W. Urban Chemical and physical aspects of self-healing materials. Progress in Polymer Science, 2015, v. 49-50, pp. 34-59.
  6. Li V.C., Yang E. Self-healing in concrete materials. In: van der Zwaag S., editor. Self-healing materials. Dordrecht: Springer, 2007, pp.161-193.
  7. Wool R.P. Self-healing materials: a review. Soft Matter, 2008, no. 4, pp. 400-418.
  8. Lee H.I., Vahedi V., Pasbakhsh P. Self-healing polymer composites: Prospects, challenges, and applications. Polymer Reviews, 2016, vol. 56, pp. 225 – 261.
  9. Van der Zwaag S., van Dijk N.H., Jonkers H.M. et al. Self-healing behavior in man-made engineering materials: bioinspired but taking into account their intrinsic character. Phil. Trans. R. Soc. A, 2009, v. 367, pp. 1689-1704.
  10. Hillewaere X.K.D., Du Prez F.E. Fifteen Chemistries for Autonomous External Self-Healing Polymers and Composites. Progress in Polymer Science, 2015, 104 p.
  11. Blaiszik B.J., Kramer S.L.B., Olugebefola S.C., Moore J.S., Sottos N.R. and White S.R. Self-Healing Polymers and Composites. Annu. Rev. Mater. Res, 2010, № 40, pp.179-211.
  12. Wu D.Y., Meure S., Solomon D. Self-healing polymeric materials: a review of recent developments. Prog. Polym. Sci., 2008, № 33(5), pp. 479-522.
  13. Акарачкин С.А. Самовосстанавливающиеся материалы. Материалы. XVIII Международной научной конференции «Решетневские чтения 2014» в 3 ч. под общ. ред. Ю. Ю. Логинова. Красноярск: Сиб. гос. аэрокосмич. ун-т., 2014, ч. 1, с. 329-330.
  14. Scheiner M., Dickens T.J., Okoli O. Progress towards self-healing polymers for composite structural applications. Polymer, 2016, no. 83, pp. 260-282.
  15. Zwaag S., Grande A.M., Post W. Review of current strategies to induce self-healing behavior in fiber reinforced polymer based composites. Mater. Sci. Technol, 2014, № 30, pp. 1633-1641.
  16. Wu M., Johannesson B., Geiker M. A review: Self-healing in cementitious materials and engineered cementitious composite as a self-healing material. Construction and Building Materials, 2012, no. 28, pp. 57-583.
  17. De Rooij, Van Tittelboom K., De Belie N. et al. Self-Healing Phenomena in Cement-Based Materials. Editors: Springer. Netherlands, 2013, p. 279.
  18. Thakur V.K., Kessler M.R. Self-healing polymer nanocomposite materials: A review. Polymer, 2015, 69, pp. 369-383.
  19. Blaiszik B. J., Sottos N. R., White S. R. Nanocapsules for self-healing materials. Composites Science and Technology, 2008, no. 68, pp. 978-986.
  20. Yang Y., Urban M. Self-healing polymeric materials. Chem. Soc. Rev., 2013, no. 42 (17), pp. 7446-7467.
  21. Urdl K., Kandelbauer A., Kern W. et al. Self-healing of densely cross linked thermoset polymers - a critical review // Progress in Organic Coatings, 2017,v. 104, pp. 232-249.
  22. Yuan Y.C., Yin Tс., Rong M.Z., Zhang M.Q. Self-healing in polymers and polymer composites. Concepts, realization and outlook: A review // eXPRESS Polymer Letters Vol.2, 4 (2008) 238–250.
  23. Zhu D.Y., Rong M.Z., Zhang M.Q. Self-healing polymeric materials based on microencapsulated healing agents: From design to preparation. Progress in Polymer Science, 2015, v. 49–50, pp. 175–220.
  24. Wool R., O’Connor K. Theory of crack healing in polymers. Appl. Phys., 1981, no. 52(10), pp. 5953-5963.
  25. Jud K., Kausch H.H., Williams J.G. Fracture mechanics studies of crack healing and welding of polymers. Journal of Materials Science, 1981, no. 16,pp. 204-210.
  26. Kim Y.H., Wool R.P. A theory of healing at a polymer-polymer interface. Macromolecules, 1983, no. 16, pp. 1115-1120.
  27. Deng G. et al. Covalent cross-linked polymer gels with reversible sol-gel transition and self-healing properties. Macromolecules, 2010, no. 43(3), pp. 1191-1194.
  28. Ono T., Nobori T., Lehn J.-M.P. et al. Dynamic polymer blended-component recombination between neat dynamic covalent polymers at room temperature. Chem. Commun., 2005, no. 12, pp. 1522-1524.
  29. Skene W.G., Lehn J.-M.P. Dynamers: polyacylhydrazone reversible covalent polymers, component exchange, and constitutional diversity. Proc. Natl. Acad. Sci. U.S.A., 2004, no. 101(22), pp. 8270-8275.
  30. Chung C.-M., Roh Y.-S., Cho S.-Y. et al. Crack healing in polymeric materials via photochemical cycloaddition. Chemistry of Materials, 2004, v. 16, no. 21, pp. 3982-3984.
  31. Смит В.А., Дильман А.Д. Основы современного органического синтеза: учеб. пособие 2-е изд. М.: БИНОМ. Лаборатория знаний, 2012, 752 с.
  32. Kötteritzsch J., Hager M.D., Schubert U.S. Tuning the Self-Healing Behavior of One-Component Intrinsic Polymers. Polymer, 2015, v. 69, pp. 321-329.
  33. Mayo J.D., Adronov A. J. Effect of spacer chemistry on the formation and properties of linear reversible polymers. Polym. Sci. Part A: Polym. Chem., 2013, no. 51(23), pp. 5056-5066.
  34. Amamoto Y., Otsuka H., Takahara A. et al. Self-healing of covalently cross-linked polymers by reshuffling thiuram disulfide moieties in air under visible light. Adv. Mater, 2012, № 24(29), pp. 3975-3980.
  35. Yuan Y.C. et al. Self-healing polymeric materials using epoxy/mercaptan as the healant. Macromolecules, 2008, no. 41 (14), pp. 5197-5202.
  36. Yuan Y.C., Ye Y., Rong M.Z. et al. Self-healing of lowvelocity impact damage in glass fabric/epoxy composites using an epoxyemercaptan healing agent. Smart Mater Struct, 2011, no. 20 (1), pp. 15-24.
  37. Патент 2473216 (РФ). Способ получения масс для лепки с биоцидными свойствами Мащенко В.И., Алексеев А.Н., Картавенко Т.В., Оленин А.В. Патентообладатель: Мащенко В.И. Дата начала действия: 27.05.2011.
  38. Мащенко В.И., Медведева И.В., Молоканова Ю.П. Использование материала на основе боросилоксана (пластидез) для дезинфекции кожи рук. Вестник МГОУ серия «Естественные науки», 2015, № 2, с. 18-26.
  39. Nakao W., Abe S. Enhancement of the self-healing ability in oxidation induced self-healing ceramic by modifying the healing agent. Smart Materials & Structures, 2012, № 21(2), pp. 1-7.
  40. Farle A., Kwarkernaak C., Van der Zwaag S. et al. A conceptual study into the potential of Mn+1AXn-phase ceramics for self-healing of crack damage. Journal of the European Ceramic Society, 2015, № 35, pp. 37-45.
  41. Yoshioka S., Nakao W. Methodology for evaluating self-healing agent of structural ceramics. Journal of Intelligent Material Systems and Structures, 2015, v. 26, №11, pp. 1395-1403.
  42. Ono M., Nakao W., Takahashi K. et al. A new methodology to guarantee the structural integrity of Al 2 O 3 /SiC composite using crack healing and a proof test. Fatigue Fract. Eng. Mater. Struct, 2007, № 30(7), pp. 599-607.
  43. Yang H.J., Pei Y.T., Rao J.C. et al. Self-healing performance of Ti 2 AlC ceramic. Journal of Materials Chemistry. 2012, № 22(17), pp. 8304-8313.
  44. Shibo L., Guiming S., Kwakernaak K.et al. Multiple crack healing of a Ti 2 AlC ceramic. Journal of the European Ceramic Society, 2012, no. 32 (8), pp. 1813-1820.
  45. Zhang S. et al. Self-healing of creep damage by gold precipitation in iron alloys. Advanced Engineering Materials, 2015, № 17(5), pp. 21-26.
  46. Shinya N., Kyono J., Laha K. Self-healing effect of boron nitride precipitation on creep cavitation in austenitic stainless Steel. Journal of Intelligent Material Systems and Structures, 2006, v. 17, pp. 1127-1133.
  47. Laha K., Kyono J., Shinya N. An advanced creep cavitation resistance Cu-containing 18Cr-12Ni-Nb austenitic stainless steel. Scripta Materialia, 2007, № 56(10), pp. 915-918.
  48. He S.M. et al. Thermally activated precipitation at deformation-induced defects in Fe-Cu and Fe-Cu-B-N alloys studied by positron annihilation spectroscopy. Physical Review, 2010, no. 81(9), pp. 94-103.
  49. Zhang, S. et al. Defect-induced Au precipitation in Fe–Au and Fe–Au–B–N alloys studied by in situ small-angle neutron scattering. Acta Materialia, 2013, №61(18), pp. 7009-7019.
  50. Li V.C., Yang E. Self-healing in concrete materials. In: van der Zwaag S., editor. Self-healing materials. Dordrecht: Springer, 2007, p. 161-193.
  51. Mehta P.K. Sulfate attack on concrete – a critical review. Materials science of concrete III. The American Ceramic Society, 1993, p. 105-130.
  52. Hearn N., Morley C.T. Self-healing, autogenous healing and continued hydration: what is the difference. Mater Struct, 1998, № 31, pp. 563-567.
  53. Yang Y.Z., Lepech M.D., Yang E.H. et al. Autogenous healing of engineered cementitious composites under wet–dry cycles. Cem. Concr. Res., 2007, № 39, pp. 382-390.
  54. Tittelboom K.V., Belie N.D., Muynck W.D. et al. Use of bacteria to repair cracks in concrete. Cem. Concr. Res., 2010, № 40, pp. 157-166.
  55. Ahn T.H., Kishi T. Crack self-healing behavior of cementitious composites incorporating various miner admixtures. J Adv. Concr. Technol., 2010, no. 8 (2), pp. 171-186.
  56. Jonkers H. Bacteria-based self-healing concrete. Heron, 2011, no. 56 (1/2), 12 p.
  57. Ehsan M., Somayeh A., Marwa H. et al. Evaluation of Self-Healing Mechanisms in Concrete with Double-Walled Sodium Silicate Microcapsules. Materials in Civil Engineering, 2015. DOI: 10.1061/(ASCE)MT.1943-5533.0001314.
  58. Qian S., Zhou J., de Rooij M.R. et al. Self-healing behavior of strain hardening cementitious composites incorporating local waste materials. Cem. Concr. Compos., 2009, no. 31, pp. 61-21.
  59. Dry C. Matrix cracking repair and filling using active and passive modes for smart timed release of chemicals from fibers into cement matrices. Smart. Mater. Struct., 1994, no. 3 (2), pp. 118-123.
  60. Kuang Y.C., Ou J.P. Self-repairing performance of concrete beams strengthened using superelastic SMA wires in combination with adhesives released from hollow fibers. Smart Mater. Struct., 2008, no. 17 (2), pp. 20-25.
  61. Otsuka K., Wayman C.M. Shape Memory Materials, Cambridge University Press, New York N.Y., U.S.A., 1998. 284 p.
  62. Sanada K., Itaya N., Shindo Y. Self-healing of interfacial debonding in fiber reinforced polymers and effect of microstructure on strength recovery. Open Mech. Eng. J., 2008, № 2, pp. 97-103.
  63. Williams G., Trask R.S., Bond I.P. A self-healing carbon fibrereinforced polymer for aerospace applications. Composites, Part A: Applied Science and Manufacturing, 2007, № 38, pp. 1525-1532.
  64. Luo X., Mather P.T. Shape memory assisted self-healing coating. ACS Macro Lett., 2013, no. 2 (2), pp. 152-156.
  65. Song G., Ma N., Li H.N. Application of shape memory alloys in civil structures. Eng. Struct., 2006, № 28, pp. 1266-1274.
  66. Burton D.S., Gao X., Brinson L.C. Finite element simulation of a self-healing shape memory alloy composite. Mechanics of Materials, 2006, № 38, рр. 525-537.
  67. Shelyakov A.V., Sitnikov N.N., Menushenkov A.P., Rizakhanov R.N. et al. Forming the two-way shape memory effect in TiNiCu alloy via melt spinning. Bulletin of the Russian Academy of Sciences: Physics, 2015, № 79(9), pp. 1134-1140.
  68. Kirkby E.L. et al. Embedded shape-memory alloy wires for improved performance of self-healing polymers. Adv. Funct. Mater., 2008, № 18(15), pp. 2253-2260.
  69. Sundeev R.V., Glezer A.M., Shalimova A.V. Structural and phase transitions in the amorphous and nanocrystalline Ti 50 Ni 25 Cu 25 alloys upon high-pressure torsion. Materials Letters, 2014, №133, рр. 32-34.
  70. Ratna D., Karger-Kocsis J. Recent advances in shape memory polymers and composites: A review. Journal of Materials Science, 2008, № 43, pp. 254-269.
  71. Xu W., Li G. Constitutive modeling of shape memory polymer based self-healing syntactic foam. Int. J. Solids Struct., 2010, № 47(9), pp. 1306-1316.
  72. Rivero G., Nguyen L.-T.T., Hillewaere X.K.D. et al. One-pot thermoremendable shape memory polyurethanes. Macromolecules, 2014, no. 47 (6), pp. 2010-2018.
  73. Kirkby E.L. et al. Performance of self-healing epoxy with microencapsulated healing agent and shape memory alloy wires. Polymer, 2009, № 50(23), pp. 5533-5538.
  74. Yin T., Rong M.Z., Zhang M.Q. et al. Self-healing epoxy composites- Preparation and effect of the healant consisting of microencapsulated epoxy and latent curing agent. Composites Science and Technology, 2007, № 67, pp. 201-212.
  75. Haase M.F., Grigoriev D.O., Mohwald H. et al. Development of nanoparticle stabilized polymer nanocontainers with high content of the encapsulated active agent and their application in water-borne anticorrosive coatings. Adv. Mater., 2012, № 24(18), pp. 2429-2435.
  76. Haiyan L., Rongguo W., Wenbo L. Preparation and self-healing performance of epoxy composites with microcapsules and tungsten (VI) chloride catalyst. J Reinf. Plast. Compos., 2012, № 31(13), pp. 924-932.
  77. White S.R. et al. Autonomic healing of polymer composites. Nature, 2001, no. 409 (6822), pp. 794-797
  78. Jackson A.C., Bartelt J.A., Marczewski K. et al. Silica-protected micron and sub-micron capsules and particles for self-healing at the microscale. Macromol Rapid Commun, 2011, no. 32 (1), pp. 82-87.
  79. Yang Y., Wei Z.J., Wang C.Y., Tong Z. Versatile fabrication of nanocom-posite microcapsules with controlled shell thickness and low permeability. ACS Appl. Mater. Interfaces, 2013, no. 5, pp. 2495-2502.
  80. Brown E.N. et al. In situ poly(urea-formaldehyde) microencapsulation of dicyclopentadiene. J. Microencapsul, 2003, no. 20 (6), pp. 719-730.
  81. et al. Preparation and characterization of self-healing microcapsules with poly (urea-formaldehyde) grafted epoxy functional group shell. J. Appl. Polym. Sci., 2009, no. 113 (3), pp. 1501-1506.
  82. Jackson A.C., Bartelt J.A., Braun P.V. Transparent self-healing polymers based on encapsulated plasticizers in a thermoplastic matrix. Adv. Funct. Mater, 2011, № 21(24), pp. 4705-4711.
  83. Kling S., Czigany T. Damage detection and self-repair in hollow glass fiber fabric-reinforced epoxy composites via fiber filling. Compos Sci. Technol., 2014, № 99, pp. 82-88.
  84. Toohey K.S., Sottos N.R., Lewis J.A. et al. Self-healing materials with microvascular networks. Nature Materials, 2007, № 6, pp. 581-585.
  85. Williams H.R. et al. Biomimetic reliability strategies for self-healing vascular networks in engineering materials. J. R. Soc. Interface, 2008, № 5(24), pp. 735-747.
  86. Hansen C.J. et al. Self-healing materials with interpenetrating microvascular networks. Adv. Mater., 2009, № 21(41), pp. 4143-4147.
  87. Hamilton A.R., Sottos N.R., White S.R. Self-healing of internal damage in synthetic vascular materials. Adv Mater, 2010, № 22(45), pp. 5159-5163.
  88. Esser-Kahn A.P., Thakre P.R., Dong H. et al. Three-dimensional microvascular fiber-reinforced composites. Adv Mater, 2011, № 23(32), pp. 3654-3658.
  89. Ситников Н.Н., Хабибуллина И.А., Мащенко В.И., Ризаханов Р.Н. Оценка перспектив применения самовосстанавливающихся материалов и технологий на их основе // Перспективные материалы, 2018, №2, стр. 5-16.
  90. Aissa B., Tagziria K., Haddad E. The Self-healing capability of carbon fibre composite structures subjectedto hypervelocity impacts simulating orbital space debris. International Scholarly Research Network. ISRN Nanomaterials, 2012, 16 p.
  91. Williams H.R., Trask R.S., Bond I.P. Self-healing composite sandwich structures. Smart Mater. Struct., 2007, № 16, pp. 1198-1207.
  92. Williams H.R., Trask R.S., Bond I.P. Self-healing sandwich panels: restoration of compressive strength after impact. Compos. Sci. Technol, 2008, № 68(15-16), pp. 3171-3177.
  93. Zavada S.R., McHardy N.R. et al. Rapid, Puncture-Initiated Healing via Oxygen-Mediated Polymerization. ACS Macro Lett., 2015, № 4, pp. 819-824.

Ситников Николай Николаевич

кандидат технических наук. Cтарший научный сотрудник (ГНЦ ФГУП «Центр Келдыша»), ведущий инженер (НИЯУ «МИФИ»). Cпециалист в области нанотехнологий и материалов с эффектом памяти формы.

Хабибуллина Ирина Александровна

Инженер ГНЦ ФГУП «Центр Келдыша». Специалист в области нанотехнологий

Мащенко Владимир Игоревич

Кандидат химических наукю Старший научный сотрудник в Московском государственном областном университете. Специалист в области нанотехнологийю.

Authors:

Sitnikov Nikolay Nikolaevich

Federal State Unitary Enterprise Keldysh Research Center; National Research Nuclear University MEPhI (Moscow Engineering Physics Institute).

Candidate of Technical sciences. Senior Research Fellow. Specialist in the field of nanotechnology and materials with shape memory effect

Khabibullina Irina Alexandrovna

Federal State Unitary Enterprise Keldysh Research Center.

Engineer 3 category. Specialist in the field of nanotechnology

Mashchenko Vladimir Igore vich

Moscow Region State University.

PhD in Chemical sciences. Senior Research Fellow. Specialist in the field of nanotechnology

  • Вперёд >
Рассказать друзьям