Арифметической прогрессии воспользуемся формулой. Арифметическая прогрессия

💖 Нравится? Поделись с друзьями ссылкой

Тема «прогрессия арифметическая» изучается в общем курсе алгебры в школах в 9 классе. Эта тема является важной для дальнейшего углубленного изучения математики числовых рядов. В данной статье познакомимся с прогрессией арифметической, ее разностью, а также с типичными задачами, с которыми могут столкнуться школьники.

Понятие о прогрессии алгебраической

Числовая прогрессия представляет собой последовательность чисел, в которой каждый последующий элемент можно получить из предыдущего, если применить некоторый математический закон. Известно два простых вида прогрессии: геометрическая и арифметическая, которую называют также алгебраической. Остановимся на ней подробнее.

Представим себе некоторое рациональное число, обозначим его символом a1, где индекс указывает его порядковый номер в рассматриваемом ряду. Добавим к a1 некоторое другое число, обозначим его d. Тогда второй элемент ряда можно отразить следующим образом: a2 = a1+d. Теперь добавим d еще раз, получим: a3 = a2+d. Продолжая эту математическую операцию, можно получить целый ряд чисел, который будет называться прогрессией арифметической.

Как можно понять из изложенного выше, чтобы найти n-ый элемент этой последовательности, необходимо воспользоваться формулой: an = a1 + (n-1)*d. Действительно, подставляя n=1 в выражение, мы получим a1 = a1, если n = 2, тогда из формулы следует: a2 = a1 + 1*d, и так далее.

Например, если разность прогрессии арифметической равна 5, а a1 = 1, то это значит, что числовой ряд рассматриваемого типа имеет вид: 1, 6, 11, 16, 21, … Как видно, каждый его член больше предыдущего на 5.

Формулы разности прогрессии арифметической

Из приведенного выше определения рассматриваемого ряда чисел следует, что для его определения необходимо знать два числа: a1 и d. Последнее называется разностью этой прогрессии. Оно однозначно определяет поведение всего ряда. Действительно, если d будет положительным, то числовой ряд будет постоянно возрастать, наоборот, в случае d отрицательного, будет происходить возрастание чисел в ряду лишь по модулю, абсолютное же их значение будет уменьшаться с ростом номера n.

Чему равна разность прогрессии арифметической? Рассмотрим две основные формулы, которые используются для вычисления этой величины:

  • d = an+1-an, эта формула следует непосредственно из определения рассматриваемого ряда чисел.
  • d = (-a1+an)/(n-1), это выражение получается, если выразить d из формулы, приведенной в предыдущем пункте статьи. Заметим, что это выражение обращается в неопределенность (0/0), если n=1. Связано это с тем, что необходимо знание как минимум 2-х элементов ряда, чтобы определить его разность.
  • Эти две основные формулы используются для решения любых задач на нахождение разности прогрессии. Однако существует еще одна формула, о которой также необходимо знать.

    Сумма первых элементов

    Формула, с помощью которой можно определить сумму любого количества членов прогрессии алгебраической, согласно историческим свидетельствам, была впервые получена «принцем» математики XVIII века Карлом Гауссом. Немецкий ученый, еще будучи мальчиком в начальных классах деревенской школы, заметил, что для того, чтобы сложить натуральные числа в ряду от 1 до 100, необходимо сначала просуммировать первый элемент и последний (полученное значение будет равно сумме предпоследнего и второго, предпредпоследнего и третьего элементов, и так далее), а затем это число следует умножить на количество этих сумм, то есть на 50.

    Формулу, которая отражает изложенный результат на частном примере, можно обобщить на произвольный случай. Она будет иметь вид: Sn = n/2*(an+a1). Заметим, что для нахождения указанной величины, знание разности d не требуется, если известны два члена прогрессии (an и a1).

    Пример №1. Определите разность, зная два члена ряда a1 и an

    Покажем, как применять указанные выше в статье формулы. Приведем простой пример: разность прогрессии арифметической неизвестна, необходимо определить, чему она будет равна, если a13 = -5,6 и a1 = -12,1.

    Поскольку нам известны значения двух элементов числовой последовательности, при этом один из них является первым числом, то можно воспользоваться формулой №2 для определения разности d. Имеем: d =(-1*(-12,1)+(-5,6))/12 = 0,54167. В выражении мы использовали значение n=13, поскольку известен член именно с этим порядковым номером.

    Полученная разность свидетельствует о том, что прогрессия является возрастающей, несмотря на то, что данные в условии задачи элементы имеют отрицательное значение. Видно, что a13>a1, хотя |a13|<|a1|.

    Пример №2. Положительные члены прогрессии в примере №1

    Воспользуемся полученным в предыдущем примере результатом, чтобы решить новую задачу. Она формулируется следующим образом: с какого порядкового номера элементы прогрессии в примере №1 начнут принимать положительные значения?

    Как было показано, прогрессия, в которой a1 = -12,1 и d = 0,54167 является возрастающей, поэтому с некоторого номера числа начнут принимать только положительные значения. Чтобы определить этот номер n, необходимо решить простое неравенство, которое математически записывается так: an>0 или, используя соответствующую формулу, перепишем неравенство: a1 + (n-1)*d>0. Необходимо найти неизвестное n, выразим его: n>-1*a1/d + 1. Теперь осталось подставить известные значения разности и первого члена последовательности. Получаем: n>-1*(-12,1) /0,54167 + 1= 23,338 или n>23,338. Поскольку n может принимать только целочисленные значения, из полученного неравенства следует, что любые члены ряда, которые будут иметь номер больше чем 23, будут положительными.

    Проверим полученный ответ, воспользовавшись приведенной выше формулой, чтобы рассчитать 23 и 24 элементы этой прогрессии арифметической. Имеем: a23=-12,1 + 22*0,54167 = -0,18326 (отрицательное число); a24=-12,1 + 23*0,54167 =0,3584 (положительное значение). Таким образом, полученный результат является верным: начиная с n=24 все члены числового ряда будут больше нуля.

    Пример №3. Сколько бревен поместится?

    Приведем одну любопытную задачу: во время заготовки леса было решено спиленные бревна укладывать друг на друга так, как это показано на рисунке ниже. Сколько бревен можно уложить таким образом, зная, что всего поместится 10 рядов?

    В таком способе складывания бревен можно заметить одну интересную вещь: каждый последующий ряд будет содержать на одно бревно меньше, чем предыдущий, то есть имеет место прогрессия алгебраическая, разность которой d=1. Полагая, что число бревен каждого ряда — это член этой прогрессии, а также учитывая, что a1 = 1 (на самом верху поместится только одно бревно), найдем число a10. Имеем: a10 = 1 + 1*(10-1) = 10. То есть в 10-м ряду, который лежит на земле, будет находиться 10 бревен.

    Общую сумму этой «пирамидальной» конструкции можно получить, если воспользоваться формулой Гаусса. Получаем: S10 = 10/2*(10+1) = 55 бревен.

    Начальный уровень

    Арифметическая прогрессия. Подробная теория с примерами (2019)

    Числовая последовательность

    Итак, сядем и начнем писать какие-нибудь числа. Например:
    Писать можно любые числа, и их может быть сколько угодно (в нашем случае их). Сколько бы чисел мы не написали, мы всегда можем сказать, какое из них первое, какое - второе и так далее до последнего, то есть, можем их пронумеровать. Это и есть пример числовой последовательности:

    Числовая последовательность
    Например, для нашей последовательности:

    Присвоенный номер характерен только для одного числа последовательности. Иными словами, в последовательности нет трех вторых чисел. Второе число (как и -ное число) всегда одно.
    Число с номером называется -ным членом последовательности.

    Всю последовательность мы обычно называем какой-нибудь буквой (например,), и каждый член этой последовательности - той же буквой с индексом, равным номеру этого члена: .

    В нашем случае:

    Допустим, у нас есть числовая последовательность, в которой разница между соседствующими числами одинакова и равна.
    Например:

    и т.д.
    Такая числовая последовательность называется арифметической прогрессией.
    Термин «прогрессия» был введен римским автором Боэцием еще в 6 веке и понимался в более широком смысле, как бесконечная числовая последовательность. Название «арифметическая» было перенесено из теории непрерывных пропорций, которыми занимались древние греки.

    Это числовая последовательность, каждый член которой равен предыдущему, сложенному с одним и тем же числом. Это число называется разностью арифметической прогрессии и обозначается.

    Попробуй определить, какие числовые последовательности являются арифметической прогрессией, а какие нет:

    a)
    b)
    c)
    d)

    Разобрался? Сравним наши ответы:
    Является арифметической прогрессией - b, c.
    Не является арифметической прогрессией - a, d.

    Вернемся к заданной прогрессии () и попробуем найти значение ее -го члена. Существует два способа его нахождения.

    1. Способ

    Мы можем прибавлять к предыдущему значению числа прогрессии, пока не дойдем до -го члена прогрессии. Хорошо, что суммировать нам осталось немного - всего три значения:

    Итак, -ой член описанной арифметической прогрессии равен.

    2. Способ

    А что если нам нужно было бы найти значение -го члена прогрессии? Суммирование заняло бы у нас не один час, и не факт, что мы не ошиблись бы при сложении чисел.
    Разумеется, математики придумали способ, при котором не нужно прибавлять разность арифметической прогрессии к предыдущему значению. Присмотрись внимательно к нарисованному рисунку… Наверняка ты уже заметил некую закономерность, а именно:

    Например, посмотрим, из чего складывается значение -го члена данной арифметической прогрессии:


    Иными словами:

    Попробуй самостоятельно найти таким способом значение члена данной арифметической прогрессии.

    Рассчитал? Сравни свои записи с ответом:

    Обрати внимание, что у тебя получилось точно такое же число, как и в предыдущем способе, когда мы последовательно прибавляли к предыдущему значению членов арифметической прогрессии.
    Попробуем «обезличить» данную формулу - приведем ее в общий вид и получим:

    Уравнение арифметической прогрессии.

    Арифметические прогрессии бывают возрастающие, а бывают убывающие.

    Возрастающие - прогрессии, в которых каждое последующее значение членов больше предыдущего.
    Например:

    Убывающие - прогрессии, в которых каждое последующее значение членов меньше предыдущего.
    Например:

    Выведенная формула применяется в расчете членов как в возрастающих, так и в убывающих членах арифметической прогрессии.
    Проверим это на практике.
    Нам дана арифметическая прогрессия, состоящая из следующих чисел: Проверим, какое получится -ое число данной арифметической прогрессии, если при его расчете использовать нашу формулу:


    Так как, то:

    Таким образом, мы убедились, что формула действует как в убывающей, так и в возрастающей арифметической прогрессии.
    Попробуй самостоятельно найти -ой и -ый члены этой арифметической прогрессии.

    Сравним полученные результаты:

    Свойство арифметической прогрессии

    Усложним задачу - выведем свойство арифметической прогрессии.
    Допустим, нам дано такое условие:
    - арифметическая прогрессия, найти значение.
    Легко, скажешь ты и начнешь считать по уже известной тебе формуле:

    Пусть, а, тогда:

    Абсолютно верно. Получается, мы сначала находим, потом прибавляем его к первому числу и получаем искомое. Если прогрессия представлена маленькими значениями, то ничего сложного в этом нет, а если нам в условии даны числа? Согласись, есть вероятность ошибиться в вычислениях.
    А теперь подумай, можно ли решить эту задачу в одно действие с использованием какой-либо формулы? Конечно да, и именно ее мы попробуем сейчас вывести.

    Обозначим искомый член арифметической прогрессии как, формула его нахождения нам известна - это та самая формула, выведенная нами в начале:
    , тогда:

    • предыдущий член прогрессии это:
    • последующий член прогрессии это:

    Просуммируем предыдущий и последующий члены прогрессии:

    Получается, что сумма предыдущего и последующего членов прогрессии - это удвоенное значение члена прогрессии, находящегося между ними. Иными словами, чтобы найти значение члена прогрессии при известных предыдущих и последовательных значениях, необходимо сложить их и разделить на.

    Все верно, мы получили это же число. Закрепим материал. Посчитай значение для прогрессии самостоятельно, ведь это совсем несложно.

    Молодец! Ты знаешь о прогрессии почти все! Осталось узнать только одну формулу, которую по легендам без труда вывел для себя один из величайших математиков всех времен, «король математиков» - Карл Гаусс...

    Когда Карлу Гауссу было 9 лет, учитель, занятый проверкой работ учеников других классов, задал на уроке следующую задачу: «Сосчитать сумму всех натуральных чисел от до (по другим источникам до) включительно». Каково же было удивление учителя, когда один из его учеников (это и был Карл Гаусс) через минуту дал правильный ответ на поставленную задачу, при этом, большинство одноклассников смельчака после долгих подсчетов получили неправильный результат…

    Юный Карл Гаусс заметил некоторую закономерность, которую без труда заметишь и ты.
    Допустим, у нас есть арифметическая прогрессия, состоящая из -ти членов: Нам необходимо найти сумму данных членов арифметической прогрессии. Конечно, мы можем вручную просуммировать все значения, но что делать, если в задании необходимо будет найти сумму ее членов, как это искал Гаусс?

    Изобразим заданную нам прогрессию. Присмотрись внимательно к выделенным числам и попробуй произвести с ними различные математические действия.


    Попробовал? Что ты заметил? Правильно! Их суммы равны


    А теперь ответь, сколько всего наберется таких пар в заданной нам прогрессии? Конечно, ровно половина всех чисел, то есть.
    Исходя из того, что сумма двух членов арифметической прогрессии равна, а подобных равных пар, мы получаем, что общая сумма равна:
    .
    Таким образом, формула для суммы первых членов любой арифметической прогрессии будет такой:

    В некоторых задачах нам неизвестен -й член, но известна разность прогрессии. Попробуй подставить в формулу суммы, формулу -го члена.
    Что у тебя получилось?

    Молодец! Теперь вернемся к задаче, которую задали Карлу Гауссу: посчитай самостоятельно, чему равна сумма чисел, начиная от -го, и сумма чисел начиная от -го.

    Сколько у тебя получилось?
    У Гаусса получилось, что сумма членов равна, а сумма членов. Так ли ты решал?

    На самом деле формула суммы членов арифметической прогрессии была доказана древнегреческим ученым Диофантом еще в 3 веке, да и на протяжении всего этого времени остроумные люди вовсю пользовались свойствами арифметической прогрессии.
    Например, представь Древний Египет и самую масштабную стройку того времени - строительство пирамиды… На рисунке представлена одна ее сторона.

    Где же здесь прогрессия скажешь ты? Посмотри внимательно и найди закономерность в количестве песчаных блоков в каждом ряде стены пирамиды.


    Чем не арифметическая прогрессия? Посчитай, сколько всего блоков необходимо для строительства одной стены, если в основание кладется блочных кирпичей. Надеюсь, ты не будешь считать, водя пальцем по монитору, ты же помнишь последнюю формулу и все, что мы говорили об арифметической прогрессии?

    В данном случае прогрессия выглядит следующим образом: .
    Разность арифметической прогрессии.
    Количество членов арифметической прогрессии.
    Подставим в последние формулы наши данные (посчитаем количество блоков 2 способами).

    Способ 1.

    Способ 2.

    А теперь можно и на мониторе посчитать: сравни полученные значения с тем количеством блоков, которое есть в нашей пирамиде. Сошлось? Молодец, ты освоил сумму -ных членов арифметической прогрессии.
    Конечно, из блоков в основании пирамиду не построишь, а вот из? Попробуй рассчитать, сколько необходимо песчаных кирпичей, чтобы построить стену с таким условием.
    Справился?
    Верный ответ - блоков:

    Тренировка

    Задачи:

    1. Маша приходит в форму к лету. Ежедневно она увеличивает количество приседаний на. Сколько раз будет приседать Маша через недели, если на первой тренировке она сделала приседаний.
    2. Какова сумма всех нечетных чисел, содержащихся в.
    3. Лесорубы при хранении бревен укладывают их таким образом, что каждый верхний слой содержит на одно бревно меньше, чем предыдущий. Сколько бревен находится в одной кладке, если основанием кладки служат бревен.

    Ответы:

    1. Определим параметры арифметической прогрессии. В данном случае
      (недели = дней).

      Ответ: Через две недели Маша должна приседать раз в день.

    2. Первое нечетное число, последнее число.
      Разность арифметической прогрессии.
      Количество нечетных чисел в - половина, однако, проверим этот факт, используя формулу нахождения -ного члена арифметической прогрессии:

      В числах действительно содержится нечетных чисел.
      Имеющиеся данные подставим в формулу:

      Ответ: Сумма всех нечетных чисел, содержащихся в, равна.

    3. Вспомним задачу про пирамиды. Для нашего случая, a , так как каждый верхний слой уменьшается на одно бревно, то всего в кучке слоев, то есть.
      Подставим данные в формулу:

      Ответ: В кладке находится бревен.

    Подведем итоги

    1. - числовая последовательность, в которой разница между соседними числами одинакова и равна. Она бывает возрастающей и убывающей.
    2. Формула нахождения -го члена арифметической прогрессии записывается формулой - , где - количество чисел в прогрессии.
    3. Свойство членов арифметической прогрессии - - где - количество чисел в прогрессии.
    4. Сумму членов арифметической прогрессии можно найти двумя способами:

      , где - количество значений.

    АРИФМЕТИЧЕСКАЯ ПРОГРЕССИЯ. СРЕДНИЙ УРОВЕНЬ

    Числовая последовательность

    Давай сядем и начнем писать какие-нибудь числа. Например:

    Писать можно любые числа, и их может быть сколько угодно. Но всегда можно сказать, какое из них первое, какое - второе и так далее, то есть, можем их пронумеровать. Это и есть пример числовой последовательности.

    Числовая последовательность - это множество чисел, каждому из которых можно присвоить уникальный номер.

    Другими словами, каждому числу можно поставить в соответствие некое натуральное число, причем единственное. И этот номер мы не присвоим больше никакому другому числу из данного множества.

    Число с номером называется -ым членом последовательности.

    Всю последовательность мы обычно называем какой-нибудь буквой (например,), и каждый член этой последовательности - той же буквой с индексом, равным номеру этого члена: .

    Очень удобно, если -ый член последовательности можно задать какой-нибудь формулой. Например, формула

    задает последовательность:

    А формула - такую последовательность:

    Например, арифметической прогрессией является последовательность (первый член здесь равен, а разность). Или (, разность).

    Формула n-го члена

    Рекуррентной мы называем такую формулу, в которой чтобы узнать -ый член, нужно знать предыдущий или несколько предыдущих:

    Чтобы найти по такой формуле, например, -ый член прогрессии, нам придется вычислить предыдущие девять. Например, пусть. Тогда:

    Ну что, ясно теперь какая формула?

    В каждой строке мы к прибавляем, умноженное на какое-то число. На какое? Очень просто: это номер текущего члена минус:

    Теперь намного удобнее, правда? Проверяем:

    Реши сам:

    В арифметической прогрессии найти формулу n-го члена и найти сотый член.

    Решение:

    Первый член равен. А чему равна разность? А вот чему:

    (она ведь потому и называется разностью, что равна разности последовательных членов прогрессии).

    Итак, формула:

    Тогда сотый член равен:

    Чему равна сумма всех натуральных чисел от до?

    По легенде, великий математик Карл Гаусс, будучи 9-летним мальчиком, посчитал эту сумму за несколько минут. Он заметил, что сумма первого и последнего числа равна, сумма второго и предпоследнего - тоже, сумма третьего и 3-го с конца - тоже, и так далее. Сколько всего наберется таких пар? Правильно, ровно половина количества всех чисел, то есть. Итак,

    Общая формула для суммы первых членов любой арифметической прогрессии будет такой:

    Пример:
    Найдите сумму всех двузначных чисел, кратных.

    Решение:

    Первое такое число - это. Каждое следующее получается добавлением к предыдущему числа. Таким образом, интересующие нас числа образуют арифметическую прогрессию с первым членом и разностью.

    Формула -го члена для этой прогрессии:

    Сколько членов в прогрессии, если все они должны быть двузначными?

    Очень легко: .

    Последний член прогрессии будет равен. Тогда сумма:

    Ответ: .

    Теперь реши сам:

    1. Ежедневно спортсмен пробегает на м больше, чем в предыдущий день. Сколько всего километров он пробежит за недели, если в первый день он пробежал км м?
    2. Велосипедист проезжает каждый день на км больше, чем в предыдущий. В первый день он проехал км. Сколько дней ему надо ехать, чтобы преодолеть км? Сколько километров он проедет за последний день пути?
    3. Цена холодильника в магазине ежегодно уменьшается на одну и ту же сумму. Определите, на сколько каждый год уменьшалась цена холодильника, если, выставленный на продажу за рублей, через шесть лет был продан за рублей.

    Ответы:

    1. Здесь самое главное - распознать арифметическую прогрессию, и определить ее параметры. В данном случае, (недели = дней). Определить нужно сумму первых членов этой прогрессии:
      .
      Ответ:
    2. Здесь дано: , надо найти.
      Очевидно, нужно использовать ту же формулу суммы, что и в предыдущей задаче:
      .
      Подставляем значения:

      Корень, очевидно, не подходит, значит, ответ.
      Посчитаем путь, пройденный за последний день с помощью формулы -го члена:
      (км).
      Ответ:

    3. Дано: . Найти: .
      Проще не бывает:
      (руб).
      Ответ:

    АРИФМЕТИЧЕСКАЯ ПРОГРЕССИЯ. КОРОТКО О ГЛАВНОМ

    Это числовая последовательность, в которой разница между соседними числами одинакова и равна.

    Арифметическая прогрессия бывает возрастающей () и убывающей ().

    Например:

    Формула нахождения n-ого члена арифметической прогрессии

    записывается формулой, где - количество чисел в прогрессии.

    Свойство членов арифметической прогрессии

    Оно позволяет легко найти член прогрессии, если известны его соседние члены - где - количество чисел в прогрессии.

    Сумма членов арифметической прогрессии

    Существует два способа нахождения суммы:

    Где - количество значений.

    Где - количество значений.

    Начальный уровень

    Арифметическая прогрессия. Подробная теория с примерами (2019)

    Числовая последовательность

    Итак, сядем и начнем писать какие-нибудь числа. Например:
    Писать можно любые числа, и их может быть сколько угодно (в нашем случае их). Сколько бы чисел мы не написали, мы всегда можем сказать, какое из них первое, какое - второе и так далее до последнего, то есть, можем их пронумеровать. Это и есть пример числовой последовательности:

    Числовая последовательность
    Например, для нашей последовательности:

    Присвоенный номер характерен только для одного числа последовательности. Иными словами, в последовательности нет трех вторых чисел. Второе число (как и -ное число) всегда одно.
    Число с номером называется -ным членом последовательности.

    Всю последовательность мы обычно называем какой-нибудь буквой (например,), и каждый член этой последовательности - той же буквой с индексом, равным номеру этого члена: .

    В нашем случае:

    Допустим, у нас есть числовая последовательность, в которой разница между соседствующими числами одинакова и равна.
    Например:

    и т.д.
    Такая числовая последовательность называется арифметической прогрессией.
    Термин «прогрессия» был введен римским автором Боэцием еще в 6 веке и понимался в более широком смысле, как бесконечная числовая последовательность. Название «арифметическая» было перенесено из теории непрерывных пропорций, которыми занимались древние греки.

    Это числовая последовательность, каждый член которой равен предыдущему, сложенному с одним и тем же числом. Это число называется разностью арифметической прогрессии и обозначается.

    Попробуй определить, какие числовые последовательности являются арифметической прогрессией, а какие нет:

    a)
    b)
    c)
    d)

    Разобрался? Сравним наши ответы:
    Является арифметической прогрессией - b, c.
    Не является арифметической прогрессией - a, d.

    Вернемся к заданной прогрессии () и попробуем найти значение ее -го члена. Существует два способа его нахождения.

    1. Способ

    Мы можем прибавлять к предыдущему значению числа прогрессии, пока не дойдем до -го члена прогрессии. Хорошо, что суммировать нам осталось немного - всего три значения:

    Итак, -ой член описанной арифметической прогрессии равен.

    2. Способ

    А что если нам нужно было бы найти значение -го члена прогрессии? Суммирование заняло бы у нас не один час, и не факт, что мы не ошиблись бы при сложении чисел.
    Разумеется, математики придумали способ, при котором не нужно прибавлять разность арифметической прогрессии к предыдущему значению. Присмотрись внимательно к нарисованному рисунку… Наверняка ты уже заметил некую закономерность, а именно:

    Например, посмотрим, из чего складывается значение -го члена данной арифметической прогрессии:


    Иными словами:

    Попробуй самостоятельно найти таким способом значение члена данной арифметической прогрессии.

    Рассчитал? Сравни свои записи с ответом:

    Обрати внимание, что у тебя получилось точно такое же число, как и в предыдущем способе, когда мы последовательно прибавляли к предыдущему значению членов арифметической прогрессии.
    Попробуем «обезличить» данную формулу - приведем ее в общий вид и получим:

    Уравнение арифметической прогрессии.

    Арифметические прогрессии бывают возрастающие, а бывают убывающие.

    Возрастающие - прогрессии, в которых каждое последующее значение членов больше предыдущего.
    Например:

    Убывающие - прогрессии, в которых каждое последующее значение членов меньше предыдущего.
    Например:

    Выведенная формула применяется в расчете членов как в возрастающих, так и в убывающих членах арифметической прогрессии.
    Проверим это на практике.
    Нам дана арифметическая прогрессия, состоящая из следующих чисел: Проверим, какое получится -ое число данной арифметической прогрессии, если при его расчете использовать нашу формулу:


    Так как, то:

    Таким образом, мы убедились, что формула действует как в убывающей, так и в возрастающей арифметической прогрессии.
    Попробуй самостоятельно найти -ой и -ый члены этой арифметической прогрессии.

    Сравним полученные результаты:

    Свойство арифметической прогрессии

    Усложним задачу - выведем свойство арифметической прогрессии.
    Допустим, нам дано такое условие:
    - арифметическая прогрессия, найти значение.
    Легко, скажешь ты и начнешь считать по уже известной тебе формуле:

    Пусть, а, тогда:

    Абсолютно верно. Получается, мы сначала находим, потом прибавляем его к первому числу и получаем искомое. Если прогрессия представлена маленькими значениями, то ничего сложного в этом нет, а если нам в условии даны числа? Согласись, есть вероятность ошибиться в вычислениях.
    А теперь подумай, можно ли решить эту задачу в одно действие с использованием какой-либо формулы? Конечно да, и именно ее мы попробуем сейчас вывести.

    Обозначим искомый член арифметической прогрессии как, формула его нахождения нам известна - это та самая формула, выведенная нами в начале:
    , тогда:

    • предыдущий член прогрессии это:
    • последующий член прогрессии это:

    Просуммируем предыдущий и последующий члены прогрессии:

    Получается, что сумма предыдущего и последующего членов прогрессии - это удвоенное значение члена прогрессии, находящегося между ними. Иными словами, чтобы найти значение члена прогрессии при известных предыдущих и последовательных значениях, необходимо сложить их и разделить на.

    Все верно, мы получили это же число. Закрепим материал. Посчитай значение для прогрессии самостоятельно, ведь это совсем несложно.

    Молодец! Ты знаешь о прогрессии почти все! Осталось узнать только одну формулу, которую по легендам без труда вывел для себя один из величайших математиков всех времен, «король математиков» - Карл Гаусс...

    Когда Карлу Гауссу было 9 лет, учитель, занятый проверкой работ учеников других классов, задал на уроке следующую задачу: «Сосчитать сумму всех натуральных чисел от до (по другим источникам до) включительно». Каково же было удивление учителя, когда один из его учеников (это и был Карл Гаусс) через минуту дал правильный ответ на поставленную задачу, при этом, большинство одноклассников смельчака после долгих подсчетов получили неправильный результат…

    Юный Карл Гаусс заметил некоторую закономерность, которую без труда заметишь и ты.
    Допустим, у нас есть арифметическая прогрессия, состоящая из -ти членов: Нам необходимо найти сумму данных членов арифметической прогрессии. Конечно, мы можем вручную просуммировать все значения, но что делать, если в задании необходимо будет найти сумму ее членов, как это искал Гаусс?

    Изобразим заданную нам прогрессию. Присмотрись внимательно к выделенным числам и попробуй произвести с ними различные математические действия.


    Попробовал? Что ты заметил? Правильно! Их суммы равны


    А теперь ответь, сколько всего наберется таких пар в заданной нам прогрессии? Конечно, ровно половина всех чисел, то есть.
    Исходя из того, что сумма двух членов арифметической прогрессии равна, а подобных равных пар, мы получаем, что общая сумма равна:
    .
    Таким образом, формула для суммы первых членов любой арифметической прогрессии будет такой:

    В некоторых задачах нам неизвестен -й член, но известна разность прогрессии. Попробуй подставить в формулу суммы, формулу -го члена.
    Что у тебя получилось?

    Молодец! Теперь вернемся к задаче, которую задали Карлу Гауссу: посчитай самостоятельно, чему равна сумма чисел, начиная от -го, и сумма чисел начиная от -го.

    Сколько у тебя получилось?
    У Гаусса получилось, что сумма членов равна, а сумма членов. Так ли ты решал?

    На самом деле формула суммы членов арифметической прогрессии была доказана древнегреческим ученым Диофантом еще в 3 веке, да и на протяжении всего этого времени остроумные люди вовсю пользовались свойствами арифметической прогрессии.
    Например, представь Древний Египет и самую масштабную стройку того времени - строительство пирамиды… На рисунке представлена одна ее сторона.

    Где же здесь прогрессия скажешь ты? Посмотри внимательно и найди закономерность в количестве песчаных блоков в каждом ряде стены пирамиды.


    Чем не арифметическая прогрессия? Посчитай, сколько всего блоков необходимо для строительства одной стены, если в основание кладется блочных кирпичей. Надеюсь, ты не будешь считать, водя пальцем по монитору, ты же помнишь последнюю формулу и все, что мы говорили об арифметической прогрессии?

    В данном случае прогрессия выглядит следующим образом: .
    Разность арифметической прогрессии.
    Количество членов арифметической прогрессии.
    Подставим в последние формулы наши данные (посчитаем количество блоков 2 способами).

    Способ 1.

    Способ 2.

    А теперь можно и на мониторе посчитать: сравни полученные значения с тем количеством блоков, которое есть в нашей пирамиде. Сошлось? Молодец, ты освоил сумму -ных членов арифметической прогрессии.
    Конечно, из блоков в основании пирамиду не построишь, а вот из? Попробуй рассчитать, сколько необходимо песчаных кирпичей, чтобы построить стену с таким условием.
    Справился?
    Верный ответ - блоков:

    Тренировка

    Задачи:

    1. Маша приходит в форму к лету. Ежедневно она увеличивает количество приседаний на. Сколько раз будет приседать Маша через недели, если на первой тренировке она сделала приседаний.
    2. Какова сумма всех нечетных чисел, содержащихся в.
    3. Лесорубы при хранении бревен укладывают их таким образом, что каждый верхний слой содержит на одно бревно меньше, чем предыдущий. Сколько бревен находится в одной кладке, если основанием кладки служат бревен.

    Ответы:

    1. Определим параметры арифметической прогрессии. В данном случае
      (недели = дней).

      Ответ: Через две недели Маша должна приседать раз в день.

    2. Первое нечетное число, последнее число.
      Разность арифметической прогрессии.
      Количество нечетных чисел в - половина, однако, проверим этот факт, используя формулу нахождения -ного члена арифметической прогрессии:

      В числах действительно содержится нечетных чисел.
      Имеющиеся данные подставим в формулу:

      Ответ: Сумма всех нечетных чисел, содержащихся в, равна.

    3. Вспомним задачу про пирамиды. Для нашего случая, a , так как каждый верхний слой уменьшается на одно бревно, то всего в кучке слоев, то есть.
      Подставим данные в формулу:

      Ответ: В кладке находится бревен.

    Подведем итоги

    1. - числовая последовательность, в которой разница между соседними числами одинакова и равна. Она бывает возрастающей и убывающей.
    2. Формула нахождения -го члена арифметической прогрессии записывается формулой - , где - количество чисел в прогрессии.
    3. Свойство членов арифметической прогрессии - - где - количество чисел в прогрессии.
    4. Сумму членов арифметической прогрессии можно найти двумя способами:

      , где - количество значений.

    АРИФМЕТИЧЕСКАЯ ПРОГРЕССИЯ. СРЕДНИЙ УРОВЕНЬ

    Числовая последовательность

    Давай сядем и начнем писать какие-нибудь числа. Например:

    Писать можно любые числа, и их может быть сколько угодно. Но всегда можно сказать, какое из них первое, какое - второе и так далее, то есть, можем их пронумеровать. Это и есть пример числовой последовательности.

    Числовая последовательность - это множество чисел, каждому из которых можно присвоить уникальный номер.

    Другими словами, каждому числу можно поставить в соответствие некое натуральное число, причем единственное. И этот номер мы не присвоим больше никакому другому числу из данного множества.

    Число с номером называется -ым членом последовательности.

    Всю последовательность мы обычно называем какой-нибудь буквой (например,), и каждый член этой последовательности - той же буквой с индексом, равным номеру этого члена: .

    Очень удобно, если -ый член последовательности можно задать какой-нибудь формулой. Например, формула

    задает последовательность:

    А формула - такую последовательность:

    Например, арифметической прогрессией является последовательность (первый член здесь равен, а разность). Или (, разность).

    Формула n-го члена

    Рекуррентной мы называем такую формулу, в которой чтобы узнать -ый член, нужно знать предыдущий или несколько предыдущих:

    Чтобы найти по такой формуле, например, -ый член прогрессии, нам придется вычислить предыдущие девять. Например, пусть. Тогда:

    Ну что, ясно теперь какая формула?

    В каждой строке мы к прибавляем, умноженное на какое-то число. На какое? Очень просто: это номер текущего члена минус:

    Теперь намного удобнее, правда? Проверяем:

    Реши сам:

    В арифметической прогрессии найти формулу n-го члена и найти сотый член.

    Решение:

    Первый член равен. А чему равна разность? А вот чему:

    (она ведь потому и называется разностью, что равна разности последовательных членов прогрессии).

    Итак, формула:

    Тогда сотый член равен:

    Чему равна сумма всех натуральных чисел от до?

    По легенде, великий математик Карл Гаусс, будучи 9-летним мальчиком, посчитал эту сумму за несколько минут. Он заметил, что сумма первого и последнего числа равна, сумма второго и предпоследнего - тоже, сумма третьего и 3-го с конца - тоже, и так далее. Сколько всего наберется таких пар? Правильно, ровно половина количества всех чисел, то есть. Итак,

    Общая формула для суммы первых членов любой арифметической прогрессии будет такой:

    Пример:
    Найдите сумму всех двузначных чисел, кратных.

    Решение:

    Первое такое число - это. Каждое следующее получается добавлением к предыдущему числа. Таким образом, интересующие нас числа образуют арифметическую прогрессию с первым членом и разностью.

    Формула -го члена для этой прогрессии:

    Сколько членов в прогрессии, если все они должны быть двузначными?

    Очень легко: .

    Последний член прогрессии будет равен. Тогда сумма:

    Ответ: .

    Теперь реши сам:

    1. Ежедневно спортсмен пробегает на м больше, чем в предыдущий день. Сколько всего километров он пробежит за недели, если в первый день он пробежал км м?
    2. Велосипедист проезжает каждый день на км больше, чем в предыдущий. В первый день он проехал км. Сколько дней ему надо ехать, чтобы преодолеть км? Сколько километров он проедет за последний день пути?
    3. Цена холодильника в магазине ежегодно уменьшается на одну и ту же сумму. Определите, на сколько каждый год уменьшалась цена холодильника, если, выставленный на продажу за рублей, через шесть лет был продан за рублей.

    Ответы:

    1. Здесь самое главное - распознать арифметическую прогрессию, и определить ее параметры. В данном случае, (недели = дней). Определить нужно сумму первых членов этой прогрессии:
      .
      Ответ:
    2. Здесь дано: , надо найти.
      Очевидно, нужно использовать ту же формулу суммы, что и в предыдущей задаче:
      .
      Подставляем значения:

      Корень, очевидно, не подходит, значит, ответ.
      Посчитаем путь, пройденный за последний день с помощью формулы -го члена:
      (км).
      Ответ:

    3. Дано: . Найти: .
      Проще не бывает:
      (руб).
      Ответ:

    АРИФМЕТИЧЕСКАЯ ПРОГРЕССИЯ. КОРОТКО О ГЛАВНОМ

    Это числовая последовательность, в которой разница между соседними числами одинакова и равна.

    Арифметическая прогрессия бывает возрастающей () и убывающей ().

    Например:

    Формула нахождения n-ого члена арифметической прогрессии

    записывается формулой, где - количество чисел в прогрессии.

    Свойство членов арифметической прогрессии

    Оно позволяет легко найти член прогрессии, если известны его соседние члены - где - количество чисел в прогрессии.

    Сумма членов арифметической прогрессии

    Существует два способа нахождения суммы:

    Где - количество значений.

    Где - количество значений.


    Да, да: арифметическая прогрессия — это вам не игрушки:)

    Что ж, друзья, если вы читаете этот текст, то внутренний кэп-очевидность подсказывает мне, что вы пока ещё не знаете, что такое арифметическая прогрессия, но очень (нет, вот так: ОООООЧЕНЬ!) хотите узнать. Поэтому не буду мучать вас длинными вступлениями и сразу перейду к делу.

    Для начала парочка примеров. Рассмотрим несколько наборов чисел:

    • 1; 2; 3; 4; ...
    • 15; 20; 25; 30; ...
    • $\sqrt{2};\ 2\sqrt{2};\ 3\sqrt{2};...$

    Что общего у всех этих наборов? На первый взгляд — ничего. Но на самом деле кое-что есть. А именно: каждый следующий элемент отличается от предыдущего на одно и то же число .

    Судите сами. Первый набор — это просто идущие подряд числа, каждое следующее на единицу больше предыдущего. Во втором случае разница между рядом стоящими числами уже равна пяти, но эта разница всё равно постоянна. В третьем случае вообще корни. Однако $2\sqrt{2}=\sqrt{2}+\sqrt{2}$, а $3\sqrt{2}=2\sqrt{2}+\sqrt{2}$, т.е. и в этом случае каждый следующий элемент просто возрастает на $\sqrt{2}$ (и пусть вас не пугает, что это число — иррациональное).

    Так вот: все такие последовательности как раз и называются арифметическими прогрессиями. Дадим строгое определение:

    Определение. Последовательность чисел, в которой каждое следующее отличается от предыдущего ровно на одну и ту же величину, называется арифметической прогрессией. Сама величина, на которую отличаются числа, называется разностью прогрессии и чаще всего обозначается буквой $d$.

    Обозначение: $\left({{a}_{n}} \right)$ — сама прогрессия, $d$ — её разность.

    И сразу парочка важных замечаний. Во-первых, прогрессией считается лишь упорядоченная последовательность чисел: их разрешено читать строго в том порядке, в котором они записаны — и никак иначе. Переставлять и менять местами числа нельзя.

    Во-вторых, сама последовательность может являться как конечной, так и бесконечной. К примеру, набор {1; 2; 3} — это, очевидно, конечная арифметическая прогрессия. Но если записать что-нибудь в духе {1; 2; 3; 4; ...} — это уже бесконечная прогрессия. Многоточие после четвёрки как бы намекает, что дальше идёт ещё довольно много чисел. Бесконечно много, например.:)

    Ещё хотел бы отметить, что прогрессии бывают возрастающими и убывающими. Возрастающие мы уже видели — тот же набор {1; 2; 3; 4; ...}. А вот примеры убывающих прогрессий:

    • 49; 41; 33; 25; 17; ...
    • 17,5; 12; 6,5; 1; −4,5; −10; ...
    • $\sqrt{5};\ \sqrt{5}-1;\ \sqrt{5}-2;\ \sqrt{5}-3;...$

    Ладно, ладно: последний пример может показаться чересчур сложным. Но остальные, думаю, вам понятны. Поэтому введём новые определения:

    Определение. Арифметическая прогрессия называется:

    1. возрастающей, если каждый следующий элемент больше предыдущего;
    2. убывающей, если, напротив, каждый последующий элемент меньше предыдущего.

    Кроме того, существуют так называемые «стационарные» последовательности — они состоят из одного и того же повторяющегося числа. Например, {3; 3; 3; ...}.

    Остаётся лишь один вопрос: как отличить возрастающую прогрессию от убывающей? К счастью, тут всё зависит лишь от того, каков знак числа $d$, т.е. разности прогрессии:

    1. Если $d \gt 0$, то прогрессия возрастает;
    2. Если $d \lt 0$, то прогрессия, очевидно, убывает;
    3. Наконец, есть случай $d=0$ — в этом случае вся прогрессия сводится к стационарной последовательности одинаковых чисел: {1; 1; 1; 1; ...} и т.д.

    Попробуем рассчитать разность $d$ для трёх убывающих прогрессий, приведённых выше. Для этого достаточно взять любые два соседних элемента (например, первый и второй) и вычесть из числа, стоящего справа, число, стоящее слева. Выглядеть это будет вот так:

    • 41−49=−8;
    • 12−17,5=−5,5;
    • $\sqrt{5}-1-\sqrt{5}=-1$.

    Как видим, во всех трёх случаях разность действительно получилась отрицательной. И теперь, когда мы более-менее разобрались с определениями, пора разобраться с тем, как описываются прогрессии и какие у них свойства.

    Члены прогрессии и рекуррентная формула

    Поскольку элементы наших последовательностей нельзя менять местами, их можно пронумеровать:

    \[\left({{a}_{n}} \right)=\left\{ {{a}_{1}},\ {{a}_{2}},{{a}_{3}},... \right\}\]

    Отдельные элементы этого набора называются членами прогрессии. На них так и указывают с помощью номера: первый член, второй член и т.д.

    Кроме того, как мы уже знаем, соседние члены прогрессии связаны формулой:

    \[{{a}_{n}}-{{a}_{n-1}}=d\Rightarrow {{a}_{n}}={{a}_{n-1}}+d\]

    Короче говоря, чтобы найти $n$-й член прогрессии, нужно знать $n-1$-й член и разность $d$. Такая формула называется рекуррентной, поскольку с её помощью можно найти любое число, лишь зная предыдущее (а по факту — все предыдущие). Это очень неудобно, поэтому существует более хитрая формула, которая сводит любые вычисления к первому члену и разности:

    \[{{a}_{n}}={{a}_{1}}+\left(n-1 \right)d\]

    Наверняка вы уже встречались с этой формулой. Её любят давать во всяких справочниках и решебниках. Да и в любом толковом учебнике по математике она идёт одной из первых.

    Тем не менее предлагаю немного потренироваться.

    Задача №1. Выпишите первые три члена арифметической прогрессии $\left({{a}_{n}} \right)$, если ${{a}_{1}}=8,d=-5$.

    Решение. Итак, нам известен первый член ${{a}_{1}}=8$ и разность прогрессии $d=-5$. Воспользуемся только что приведённой формулой и подставим $n=1$, $n=2$ и $n=3$:

    \[\begin{align} & {{a}_{n}}={{a}_{1}}+\left(n-1 \right)d; \\ & {{a}_{1}}={{a}_{1}}+\left(1-1 \right)d={{a}_{1}}=8; \\ & {{a}_{2}}={{a}_{1}}+\left(2-1 \right)d={{a}_{1}}+d=8-5=3; \\ & {{a}_{3}}={{a}_{1}}+\left(3-1 \right)d={{a}_{1}}+2d=8-10=-2. \\ \end{align}\]

    Ответ: {8; 3; −2}

    Вот и всё! Обратите внимание: наша прогрессия — убывающая.

    Конечно, $n=1$ можно было и не подставлять — первый член нам и так известен. Впрочем, подставив единицу, мы убедились, что даже для первого члена наша формула работает. В остальных случаях всё свелось к банальной арифметике.

    Задача №2. Выпишите первые три члена арифметической прогрессии, если её седьмой член равен −40, а семнадцатый член равен −50.

    Решение. Запишем условие задачи в привычных терминах:

    \[{{a}_{7}}=-40;\quad {{a}_{17}}=-50.\]

    \[\left\{ \begin{align} & {{a}_{7}}={{a}_{1}}+6d \\ & {{a}_{17}}={{a}_{1}}+16d \\ \end{align} \right.\]

    \[\left\{ \begin{align} & {{a}_{1}}+6d=-40 \\ & {{a}_{1}}+16d=-50 \\ \end{align} \right.\]

    Знак системы я поставил потому, что эти требования должны выполняться одновременно. А теперь заметим, если вычесть из второго уравнения первое (мы имеем право это сделать, т.к. у нас система), то получим вот что:

    \[\begin{align} & {{a}_{1}}+16d-\left({{a}_{1}}+6d \right)=-50-\left(-40 \right); \\ & {{a}_{1}}+16d-{{a}_{1}}-6d=-50+40; \\ & 10d=-10; \\ & d=-1. \\ \end{align}\]

    Вот так просто мы нашли разность прогрессии! Осталось подставить найденное число в любое из уравнений системы. Например, в первое:

    \[\begin{matrix} {{a}_{1}}+6d=-40;\quad d=-1 \\ \Downarrow \\ {{a}_{1}}-6=-40; \\ {{a}_{1}}=-40+6=-34. \\ \end{matrix}\]

    Теперь, зная первый член и разность, осталось найти второй и третий член:

    \[\begin{align} & {{a}_{2}}={{a}_{1}}+d=-34-1=-35; \\ & {{a}_{3}}={{a}_{1}}+2d=-34-2=-36. \\ \end{align}\]

    Готово! Задача решена.

    Ответ: {−34; −35; −36}

    Обратите внимание на любопытное свойство прогрессии, которое мы обнаружили: если взять $n$-й и $m$-й члены и вычесть их друг из друга, то мы получим разность прогрессии, умноженную на число $n-m$:

    \[{{a}_{n}}-{{a}_{m}}=d\cdot \left(n-m \right)\]

    Простое, но очень полезное свойство, которое обязательно надо знать — с его помощью можно значительно ускорить решение многих задач по прогрессиям. Вот яркий тому пример:

    Задача №3. Пятый член арифметической прогрессии равен 8,4, а её десятый член равен 14,4. Найдите пятнадцатый член этой прогрессии.

    Решение. Поскольку ${{a}_{5}}=8,4$, ${{a}_{10}}=14,4$, а нужно найти ${{a}_{15}}$, то заметим следующее:

    \[\begin{align} & {{a}_{15}}-{{a}_{10}}=5d; \\ & {{a}_{10}}-{{a}_{5}}=5d. \\ \end{align}\]

    Но по условию ${{a}_{10}}-{{a}_{5}}=14,4-8,4=6$, поэтому $5d=6$, откуда имеем:

    \[\begin{align} & {{a}_{15}}-14,4=6; \\ & {{a}_{15}}=6+14,4=20,4. \\ \end{align}\]

    Ответ: 20,4

    Вот и всё! Нам не потребовалось составлять какие-то системы уравнений и считать первый член и разность — всё решилось буквально в пару строчек.

    Теперь рассмотрим другой вид задач — на поиск отрицательных и положительных членов прогрессии. Не секрет, что если прогрессия возрастает, при этом первый член у неё отрицательный, то рано или поздно в ней появятся положительные члены. И напротив: члены убывающей прогрессии рано или поздно станут отрицательными.

    При этом далеко не всегда можно нащупать этот момент «в лоб», последовательно перебирая элементы. Зачастую задачи составлены так, что без знания формул вычисления заняли бы несколько листов — мы просто уснули бы, пока нашли ответ. Поэтому попробуем решить эти задачи более быстрым способом.

    Задача №4. Сколько отрицательных членов в арифметической прогрессии −38,5; −35,8; …?

    Решение. Итак, ${{a}_{1}}=-38,5$, ${{a}_{2}}=-35,8$, откуда сразу находим разность:

    Заметим, что разность положительна, поэтому прогрессия возрастает. Первый член отрицателен, поэтому действительно в какой-то момент мы наткнёмся на положительные числа. Вопрос лишь в том, когда это произойдёт.

    Попробуем выяснить: до каких пор (т.е. до какого натурального числа $n$) сохраняется отрицательность членов:

    \[\begin{align} & {{a}_{n}} \lt 0\Rightarrow {{a}_{1}}+\left(n-1 \right)d \lt 0; \\ & -38,5+\left(n-1 \right)\cdot 2,7 \lt 0;\quad \left| \cdot 10 \right. \\ & -385+27\cdot \left(n-1 \right) \lt 0; \\ & -385+27n-27 \lt 0; \\ & 27n \lt 412; \\ & n \lt 15\frac{7}{27}\Rightarrow {{n}_{\max }}=15. \\ \end{align}\]

    Последняя строчка требует пояснения. Итак, нам известно, что $n \lt 15\frac{7}{27}$. С другой стороны, нас устроят лишь целые значения номера (более того: $n\in \mathbb{N}$), поэтому наибольший допустимый номер — это именно $n=15$, а ни в коем случае не 16.

    Задача №5. В арифметической прогрессии ${{}_{5}}=-150,{{}_{6}}=-147$. Найдите номер первого положительного члена этой прогрессии.

    Это была бы точь-в-точь такая же задача, как и предыдущая, однако нам неизвестно ${{a}_{1}}$. Зато известны соседние члены: ${{a}_{5}}$ и ${{a}_{6}}$, поэтому мы легко найдём разность прогрессии:

    Кроме того, попробуем выразить пятый член через первый и разность по стандартной формуле:

    \[\begin{align} & {{a}_{n}}={{a}_{1}}+\left(n-1 \right)\cdot d; \\ & {{a}_{5}}={{a}_{1}}+4d; \\ & -150={{a}_{1}}+4\cdot 3; \\ & {{a}_{1}}=-150-12=-162. \\ \end{align}\]

    Теперь поступаем по аналогии с предыдущей задачей. Выясняем, в какой момент в нашей последовательности возникнут положительные числа:

    \[\begin{align} & {{a}_{n}}=-162+\left(n-1 \right)\cdot 3 \gt 0; \\ & -162+3n-3 \gt 0; \\ & 3n \gt 165; \\ & n \gt 55\Rightarrow {{n}_{\min }}=56. \\ \end{align}\]

    Минимальное целочисленное решение данного неравенства — число 56.

    Обратите внимание: в последнем задании всё свелось к строгому неравенству, поэтому вариант $n=55$ нас не устроит.

    Теперь, когда мы научились решать простые задачи, перейдём к более сложным. Но для начала давайте изучим ещё одно очень полезное свойство арифметических прогрессий, которое в будущем сэкономит нам кучу времени и неравных клеток.:)

    Среднее арифметическое и равные отступы

    Рассмотрим несколько последовательных членов возрастающей арифметической прогрессии $\left({{a}_{n}} \right)$. Попробуем отметить их на числовой прямой:

    Члены арифметической прогрессии на числовой прямой

    Я специально отметил произвольные члены ${{a}_{n-3}},...,{{a}_{n+3}}$, а не какие-нибудь ${{a}_{1}},\ {{a}_{2}},\ {{a}_{3}}$ и т.д. Потому что правило, о котором я сейчас расскажу, одинаково работает для любых «отрезков».

    А правило очень простое. Давайте вспомним рекуррентную формулу и запишем её для всех отмеченных членов:

    \[\begin{align} & {{a}_{n-2}}={{a}_{n-3}}+d; \\ & {{a}_{n-1}}={{a}_{n-2}}+d; \\ & {{a}_{n}}={{a}_{n-1}}+d; \\ & {{a}_{n+1}}={{a}_{n}}+d; \\ & {{a}_{n+2}}={{a}_{n+1}}+d; \\ \end{align}\]

    Однако эти равенства можно переписать иначе:

    \[\begin{align} & {{a}_{n-1}}={{a}_{n}}-d; \\ & {{a}_{n-2}}={{a}_{n}}-2d; \\ & {{a}_{n-3}}={{a}_{n}}-3d; \\ & {{a}_{n+1}}={{a}_{n}}+d; \\ & {{a}_{n+2}}={{a}_{n}}+2d; \\ & {{a}_{n+3}}={{a}_{n}}+3d; \\ \end{align}\]

    Ну и что с того? А то, что члены ${{a}_{n-1}}$ и ${{a}_{n+1}}$ лежат на одном и том же расстоянии от ${{a}_{n}}$. И это расстояние равно $d$. То же самое можно сказать про члены ${{a}_{n-2}}$ и ${{a}_{n+2}}$ — они тоже удалены от ${{a}_{n}}$ на одинаковое расстояние, равное $2d$. Продолжать можно до бесконечности, но смысл хорошо иллюстрирует картинка


    Члены прогрессии лежат на одинаковом расстоянии от центра

    Что это значит для нас? Это значит, что можно найти ${{a}_{n}}$, если известны числа-соседи:

    \[{{a}_{n}}=\frac{{{a}_{n-1}}+{{a}_{n+1}}}{2}\]

    Мы вывели великолепное утверждение: всякий член арифметической прогрессии равен среднему арифметическому соседних членов! Более того: мы можем отступить от нашего ${{a}_{n}}$ влево и вправо не на один шаг, а на $k$ шагов — и всё равно формула будет верна:

    \[{{a}_{n}}=\frac{{{a}_{n-k}}+{{a}_{n+k}}}{2}\]

    Т.е. мы спокойно можем найти какое-нибудь ${{a}_{150}}$, если знаем ${{a}_{100}}$ и ${{a}_{200}}$, потому что ${{a}_{150}}=\frac{{{a}_{100}}+{{a}_{200}}}{2}$. На первый взгляд может показаться, что данный факт не даёт нам ничего полезного. Однако на практике многие задачи специально «заточены» под использование среднего арифметического. Взгляните:

    Задача №6. Найдите все значения $x$, при которых числа $-6{{x}^{2}}$, $x+1$ и $14+4{{x}^{2}}$ являются последовательными членами арифметической прогрессии (в указанном порядке).

    Решение. Поскольку указанные числа являются членами прогрессии, для них выполняется условие среднего арифметического: центральный элемент $x+1$ можно выразить через соседние элементы:

    \[\begin{align} & x+1=\frac{-6{{x}^{2}}+14+4{{x}^{2}}}{2}; \\ & x+1=\frac{14-2{{x}^{2}}}{2}; \\ & x+1=7-{{x}^{2}}; \\ & {{x}^{2}}+x-6=0. \\ \end{align}\]

    Получилось классическое квадратное уравнение. Его корни: $x=2$ и $x=-3$ — это и есть ответы.

    Ответ: −3; 2.

    Задача №7. Найдите значения $$, при которых числа $-1;4-3;{{}^{2}}+1$ составляют арифметическую прогрессию (в указанном порядке).

    Решение. Опять выразим средний член через среднее арифметическое соседних членов:

    \[\begin{align} & 4x-3=\frac{x-1+{{x}^{2}}+1}{2}; \\ & 4x-3=\frac{{{x}^{2}}+x}{2};\quad \left| \cdot 2 \right.; \\ & 8x-6={{x}^{2}}+x; \\ & {{x}^{2}}-7x+6=0. \\ \end{align}\]

    Снова квадратное уравнение. И снова два корня: $x=6$ и$x=1$.

    Ответ: 1; 6.

    Если в процессе решения задачи у вас вылезают какие-то зверские числа, либо вы не до конца уверены в правильности найденных ответов, то есть замечательный приём, позволяющий проверить: правильно ли мы решили задачу?

    Допустим, в задаче №6 мы получили ответы −3 и 2. Как проверить, что эти ответы верны? Давайте просто подставим их в исходное условие и посмотрим, что получится. Напомню, что у нас есть три числа ($-6{{}^{2}}$, $+1$ и $14+4{{}^{2}}$), которые должны составлять арифметическую прогрессию. Подставим $x=-3$:

    \[\begin{align} & x=-3\Rightarrow \\ & -6{{x}^{2}}=-54; \\ & x+1=-2; \\ & 14+4{{x}^{2}}=50. \end{align}\]

    Получили числа −54; −2; 50, которые отличаются на 52 — несомненно, это арифметическая прогрессия. То же самое происходит и при $x=2$:

    \[\begin{align} & x=2\Rightarrow \\ & -6{{x}^{2}}=-24; \\ & x+1=3; \\ & 14+4{{x}^{2}}=30. \end{align}\]

    Опять прогрессия, но с разностью 27. Таким образом, задача решена верно. Желающие могут проверить вторую задачу самостоятельно, но сразу скажу: там тоже всё верно.

    В целом, решая последние задачи, мы наткнулись на ещё один интересный факт, который тоже необходимо запомнить:

    Если три числа таковы, что второе является средним арифметическим первого и последнего, то эти числа образуют арифметическую прогрессию.

    В будущем понимание этого утверждения позволит нам буквально «конструировать» нужные прогрессии, опираясь на условие задачи. Но прежде чем мы займёмся подобным «конструированием», следует обратить внимание на ещё один факт, который прямо следует из уже рассмотренного.

    Группировка и сумма элементов

    Давайте ещё раз вернёмся к числовой оси. Отметим там несколько членов прогрессии, между которыми, возможно. стоит очень много других членов:

    На числовой прямой отмечены 6 элементов

    Попробуем выразить «левый хвост» через ${{a}_{n}}$ и $d$, а «правый хвост» через ${{a}_{k}}$ и $d$. Это очень просто:

    \[\begin{align} & {{a}_{n+1}}={{a}_{n}}+d; \\ & {{a}_{n+2}}={{a}_{n}}+2d; \\ & {{a}_{k-1}}={{a}_{k}}-d; \\ & {{a}_{k-2}}={{a}_{k}}-2d. \\ \end{align}\]

    А теперь заметим, что равны следующие суммы:

    \[\begin{align} & {{a}_{n}}+{{a}_{k}}=S; \\ & {{a}_{n+1}}+{{a}_{k-1}}={{a}_{n}}+d+{{a}_{k}}-d=S; \\ & {{a}_{n+2}}+{{a}_{k-2}}={{a}_{n}}+2d+{{a}_{k}}-2d=S. \end{align}\]

    Проще говоря, если мы рассмотрим в качестве старта два элемента прогрессии, которые в сумме равны какому-нибудь числу $S$, а затем начнём шагать от этих элементов в противоположные стороны (навстречу друг другу или наоборот на удаление), то суммы элементов, на которые мы будем натыкаться, тоже будут равны $S$. Наиболее наглядно это можно представить графически:


    Одинаковые отступы дают равные суммы

    Понимание данного факта позволит нам решать задачи принципиально более высокого уровня сложности, нежели те, что мы рассматривали выше. Например, такие:

    Задача №8. Определите разность арифметической прогрессии, в которой первый член равен 66, а произведение второго и двенадцатого членов является наименьшим из возможных.

    Решение. Запишем всё, что нам известно:

    \[\begin{align} & {{a}_{1}}=66; \\ & d=? \\ & {{a}_{2}}\cdot {{a}_{12}}=\min . \end{align}\]

    Итак, нам неизвестна разность прогрессии $d$. Собственно, вокруг разности и будет строиться всё решение, поскольку произведение ${{a}_{2}}\cdot {{a}_{12}}$ можно переписать следующим образом:

    \[\begin{align} & {{a}_{2}}={{a}_{1}}+d=66+d; \\ & {{a}_{12}}={{a}_{1}}+11d=66+11d; \\ & {{a}_{2}}\cdot {{a}_{12}}=\left(66+d \right)\cdot \left(66+11d \right)= \\ & =11\cdot \left(d+66 \right)\cdot \left(d+6 \right). \end{align}\]

    Для тех, кто в танке: я вынес общий множитель 11 из второй скобки. Таким образом, искомое произведение представляет собой квадратичную функцию относительно переменной $d$. Поэтому рассмотрим функцию $f\left(d \right)=11\left(d+66 \right)\left(d+6 \right)$ — её графиком будет парабола ветвями вверх, т.к. если раскрыть скобки, то мы получим:

    \[\begin{align} & f\left(d \right)=11\left({{d}^{2}}+66d+6d+66\cdot 6 \right)= \\ & =11{{d}^{2}}+11\cdot 72d+11\cdot 66\cdot 6 \end{align}\]

    Как видим, коэффициент при старшем слагаемом равен 11 — это положительное число, поэтому действительно имеем дело с параболой ветвями вверх:


    график квадратичной функции — парабола

    Обратите внимание: минимальное значение эта парабола принимает в своей вершине с абсциссой ${{d}_{0}}$. Конечно, мы можем посчитать эту абсциссу по стандартной схеме (есть же формула ${{d}_{0}}={-b}/{2a}\;$), но куда разумнее будет заметить, что искомая вершина лежит на оси симметрии параболы, поэтому точка ${{d}_{0}}$ равноудалена от корней уравнения $f\left(d \right)=0$:

    \[\begin{align} & f\left(d \right)=0; \\ & 11\cdot \left(d+66 \right)\cdot \left(d+6 \right)=0; \\ & {{d}_{1}}=-66;\quad {{d}_{2}}=-6. \\ \end{align}\]

    Именно поэтому я не особо спешил раскрывать скобки: в исходном виде корни было найти очень и очень просто. Следовательно, абсцисса равна среднему арифметическому чисел −66 и −6:

    \[{{d}_{0}}=\frac{-66-6}{2}=-36\]

    Что даёт нам обнаруженное число? При нём требуемое произведение принимает наименьшее значение (мы, кстати, так и не посчитали ${{y}_{\min }}$ — от нас это не требуется). Одновременно это число является разностью исходной прогрессии, т.е. мы нашли ответ.:)

    Ответ: −36

    Задача №9. Между числами $-\frac{1}{2}$ и $-\frac{1}{6}$ вставьте три числа так, чтобы они вместе с данными числами составили арифметическую прогрессию.

    Решение. По сути, нам нужно составить последовательность из пяти чисел, причём первое и последнее число уже известно. Обозначим недостающие числа переменными $x$, $y$ и $z$:

    \[\left({{a}_{n}} \right)=\left\{ -\frac{1}{2};x;y;z;-\frac{1}{6} \right\}\]

    Отметим, что число $y$ является «серединой» нашей последовательности — оно равноудалено и от чисел $x$ и $z$, и от чисел $-\frac{1}{2}$ и $-\frac{1}{6}$. И если из чисел $x$ и $z$ мы в данный момент не можем получить $y$, то вот с концами прогрессии дело обстоит иначе. Вспоминаем про среднее арифметическое:

    Теперь, зная $y$, мы найдём оставшиеся числа. Заметим, что $x$ лежит между числами $-\frac{1}{2}$ и только что найденным $y=-\frac{1}{3}$. Поэтому

    Аналогично рассуждая, находим оставшееся число:

    Готово! Мы нашли все три числа. Запишем их в ответе в том порядке, в котором они должны быть вставлены между исходными числами.

    Ответ: $-\frac{5}{12};\ -\frac{1}{3};\ -\frac{1}{4}$

    Задача №10. Между числами 2 и 42 вставьте несколько чисел, которые вместе с данными числами образуют арифметическую прогрессию, если известно, что сумма первого, второго и последнего из вставленных чисел равна 56.

    Решение. Ещё более сложная задача, которая, однако, решается по той же схеме, что и предыдущие — через среднее арифметическое. Проблема в том, что нам неизвестно, сколько конкретно чисел надо вставить. Поэтому положим для опредлённости, что после вставки всего будет ровно $n$ чисел, причём первое из них — это 2, а последнее — 42. В этом случае искомая арифметическая прогрессия представима в виде:

    \[\left({{a}_{n}} \right)=\left\{ 2;{{a}_{2}};{{a}_{3}};...;{{a}_{n-1}};42 \right\}\]

    \[{{a}_{2}}+{{a}_{3}}+{{a}_{n-1}}=56\]

    Заметим, однако, что числа ${{a}_{2}}$ и ${{a}_{n-1}}$ получаются из стоящих по краям чисел 2 и 42 путём одного шага навстречу друг другу, т.е. к центру последовательности. А это значит, что

    \[{{a}_{2}}+{{a}_{n-1}}=2+42=44\]

    Но тогда записанное выше выражение можно переписать так:

    \[\begin{align} & {{a}_{2}}+{{a}_{3}}+{{a}_{n-1}}=56; \\ & \left({{a}_{2}}+{{a}_{n-1}} \right)+{{a}_{3}}=56; \\ & 44+{{a}_{3}}=56; \\ & {{a}_{3}}=56-44=12. \\ \end{align}\]

    Зная ${{a}_{3}}$ и ${{a}_{1}}$, мы легко найдём разность прогрессии:

    \[\begin{align} & {{a}_{3}}-{{a}_{1}}=12-2=10; \\ & {{a}_{3}}-{{a}_{1}}=\left(3-1 \right)\cdot d=2d; \\ & 2d=10\Rightarrow d=5. \\ \end{align}\]

    Осталось лишь найти остальные члены:

    \[\begin{align} & {{a}_{1}}=2; \\ & {{a}_{2}}=2+5=7; \\ & {{a}_{3}}=12; \\ & {{a}_{4}}=2+3\cdot 5=17; \\ & {{a}_{5}}=2+4\cdot 5=22; \\ & {{a}_{6}}=2+5\cdot 5=27; \\ & {{a}_{7}}=2+6\cdot 5=32; \\ & {{a}_{8}}=2+7\cdot 5=37; \\ & {{a}_{9}}=2+8\cdot 5=42; \\ \end{align}\]

    Таким образом, уже на 9-м шаге мы придём в левый конец последовательности — число 42. Итого нужно было вставить лишь 7 чисел: 7; 12; 17; 22; 27; 32; 37.

    Ответ: 7; 12; 17; 22; 27; 32; 37

    Текстовые задачи с прогрессиями

    В заключение хотелось бы рассмотреть парочку относительно простых задач. Ну, как простых: для большинства учеников, которые изучают математику в школе и не читали того, что написано выше, эти задачи могут показаться жестью. Тем не менее именно такие задачи попадаются в ОГЭ и ЕГЭ по математике, поэтому рекомендую ознакомиться с ними.

    Задача №11. Бригада изготовила в январе 62 детали, а в каждый следующий месяц изготовляла на 14 деталей больше, чем в предыдущий. Сколько деталей изготовила бригада в ноябре?

    Решение. Очевидно, количество деталей, расписанное по месяцам, будет представлять собой возрастающую арифметическую прогрессию. Причём:

    \[\begin{align} & {{a}_{1}}=62;\quad d=14; \\ & {{a}_{n}}=62+\left(n-1 \right)\cdot 14. \\ \end{align}\]

    Ноябрь — это 11-й месяц в году, поэтому нам нужно найти ${{a}_{11}}$:

    \[{{a}_{11}}=62+10\cdot 14=202\]

    Следовательно, в ноябре будет изготовлено 202 детали.

    Задача №12. Переплётная мастерская переплела в январе 216 книг, а в каждый следующий месяц она переплетала на 4 книги больше, чем в предыдущий. Сколько книг переплела мастерская в декабре?

    Решение. Всё то же самое:

    $\begin{align} & {{a}_{1}}=216;\quad d=4; \\ & {{a}_{n}}=216+\left(n-1 \right)\cdot 4. \\ \end{align}$

    Декабрь — это последний, 12-й месяц в году, поэтому ищем ${{a}_{12}}$:

    \[{{a}_{12}}=216+11\cdot 4=260\]

    Это и есть ответ — 260 книг будет переплетено в декабре.

    Что ж, если вы дочитали до сюда, спешу вас поздравить: «курс молодого бойца» по арифметическим прогрессиям вы успешно прошли. Можно смело переходить к следующему уроку, где мы изучим формулу суммы прогрессии, а также важные и очень полезные следствия из неё.

    При изучении алгебры в общеобразовательной школе (9 класс) одной из важных тем является изучение числовых последовательностей, к которым относятся прогрессии -геометрическая и арифметическая. В данной статье рассмотрим арифметическую прогрессию и примеры с решениями.

    Что собой представляет арифметическая прогрессия?

    Чтобы это понять, необходимо дать определение рассматриваемой прогрессии, а также привести основные формулы, которые далее будут использованы при решении задач.

    Арифметическая или - это такой набор упорядоченных рациональных чисел, каждый член которого отличается от предыдущего на некоторую постоянную величину. Эта величина называется разностью. То есть, зная любой член упорядоченного ряда чисел и разность, можно восстановить всю арифметическую прогрессию.

    Приведем пример. Следующая последовательность чисел будет прогрессией арифметической: 4, 8, 12, 16, ..., поскольку разность в этом случае равна 4 (8 - 4 = 12 - 8 = 16 - 12). А вот набор чисел 3, 5, 8, 12, 17 уже нельзя отнести к рассматриваемому виду прогрессии, поскольку разность для него не является постоянной величиной (5 - 3 ≠ 8 - 5 ≠ 12 - 8 ≠ 17 - 12).

    Важные формулы

    Приведем теперь основные формулы, которые понадобятся для решения задач с использованием арифметической прогрессии. Обозначим символом a n n-й член последовательности, где n - целое число. Разность обозначим латинской буквой d. Тогда справедливы следующие выражения:

    1. Для определения значения n-го члена подойдет формула: a n = (n-1)*d+a 1 .
    2. Для определения суммы первых n слагаемых: S n = (a n +a 1)*n/2.

    Чтобы понять любые примеры арифметической прогрессии с решением в 9 классе, достаточно запомнить эти две формулы, поскольку на их использовании строятся любые задачи рассматриваемого типа. Также следует не забывать, что разность прогрессии определяется по формуле: d = a n - a n-1 .

    Пример №1: нахождение неизвестного члена

    Приведем простой пример прогрессии арифметической и формул, которые необходимо использовать для решения.

    Пусть дана последовательность 10, 8, 6, 4, ..., необходимо в ней найти пять членов.

    Из условия задачи уже следует, что первые 4 слагаемых известны. Пятое можно определить двумя способами:

    1. Вычислим для начала разность. Имеем: d = 8 - 10 = -2. Аналогичным образом можно было взять любые два других члена, стоящих рядом друг с другом. Например, d = 4 - 6 = -2. Поскольку известно, что d = a n - a n-1 , тогда d = a 5 - a 4 , откуда получаем: a 5 = a 4 + d. Подставляем известные значения: a 5 = 4 + (-2) = 2.
    2. Второй способ также требует знания разности рассматриваемой прогрессии, поэтому сначала нужно определить ее, как показано выше (d = -2). Зная, что первый член a 1 = 10, воспользуемся формулой для n числа последовательности. Имеем: a n = (n - 1) * d + a 1 = (n - 1) * (-2) + 10 = 12 - 2*n. Подставляя в последнее выражение n = 5, получаем: a 5 = 12-2 * 5 = 2.

    Как видно, оба способа решения привели к одному и тому же результату. Отметим, что в этом примере разность d прогрессии является отрицательной величиной. Такие последовательности называются убывающими, так как каждый следующий член меньше предыдущего.

    Пример №2: разность прогрессии

    Теперь усложним немного задачу, приведем пример, как найти разность прогрессии арифметической.

    Известно, что в некоторой прогрессии алгебраической 1-й член равен 6, а 7-й член равен 18. Необходимо найти разность и восстановить эту последовательность до 7 члена.

    Воспользуемся формулой для определения неизвестного члена: a n = (n - 1) * d + a 1 . Подставим в нее известные данные из условия, то есть числа a 1 и a 7 , имеем: 18 = 6 + 6 * d. Из этого выражения можно легко вычислить разность: d = (18 - 6) /6 = 2. Таким образом, ответили на первую часть задачи.

    Чтобы восстановить последовательность до 7 члена, следует воспользоваться определением алгебраической прогрессии, то есть a 2 = a 1 + d, a 3 = a 2 + d и так далее. В итоге восстанавливаем всю последовательность: a 1 = 6, a 2 = 6 + 2=8, a 3 = 8 + 2 = 10, a 4 = 10 + 2 = 12, a 5 = 12 + 2 = 14, a 6 = 14 + 2 = 16, a 7 = 18.

    Пример №3: составление прогрессии

    Усложним еще сильнее условие задачи. Теперь необходимо ответить на вопрос, как находить арифметическую прогрессию. Можно привести следующий пример: даны два числа, например, - 4 и 5. Необходимо составить прогрессию алгебраическую так, чтобы между этими помещалось еще три члена.

    Прежде чем начинать решать эту задачу, необходимо понять, какое место будут занимать заданные числа в будущей прогрессии. Поскольку между ними будут находиться еще три члена, тогда a 1 = -4 и a 5 = 5. Установив это, переходим к задаче, которая аналогична предыдущей. Снова для n-го члена воспользуемся формулой, получим: a 5 = a 1 + 4 * d. Откуда: d = (a 5 - a 1)/4 = (5 - (-4)) / 4 = 2,25. Здесь получили не целое значение разности, однако оно является рациональным числом, поэтому формулы для алгебраической прогрессии остаются теми же самыми.

    Теперь добавим найденную разность к a 1 и восстановим недостающие члены прогрессии. Получаем: a 1 = - 4, a 2 = - 4 + 2,25 = - 1,75, a 3 = -1,75 + 2,25 = 0,5, a 4 = 0,5 + 2,25 = 2,75, a 5 = 2,75 + 2,25 = 5, что совпало с условием задачи.

    Пример №4: первый член прогрессии

    Продолжим приводить примеры арифметической прогрессии с решением. Во всех предыдущих задачах было известно первое число алгебраической прогрессии. Теперь рассмотрим задачу иного типа: пусть даны два числа, где a 15 = 50 и a 43 = 37. Необходимо найти, с какого числа начинается эта последовательность.

    Формулы, которыми пользовались до настоящего времени, предполагают знание a 1 и d. В условии задачи об этих числах ничего неизвестно. Тем не менее выпишем выражения для каждого члена, о котором имеется информация: a 15 = a 1 + 14 * d и a 43 = a 1 + 42 * d. Получили два уравнения, в которых 2 неизвестные величины (a 1 и d). Это означает, что задача сводится к решению системы линейных уравнений.

    Указанную систему проще всего решить, если выразить в каждом уравнении a 1 , а затем сравнить полученные выражения. Первое уравнение: a 1 = a 15 - 14 * d = 50 - 14 * d; второе уравнение: a 1 = a 43 - 42 * d = 37 - 42 * d. Приравнивая эти выражения, получим: 50 - 14 * d = 37 - 42 * d, откуда разность d = (37 - 50) / (42 - 14) = - 0,464 (приведены лишь 3 знака точности после запятой).

    Зная d, можно воспользоваться любым из 2 приведенных выше выражений для a 1 . Например, первым: a 1 = 50 - 14 * d = 50 - 14 * (- 0,464) = 56,496.

    Если возникают сомнения в полученном результате, можно его проверить, например, определить 43 член прогрессии, который задан в условии. Получим: a 43 = a 1 + 42 * d = 56,496 + 42 * (- 0,464) = 37,008. Небольшая погрешность связана с тем, что при вычислениях использовалось округление до тысячных долей.

    Пример №5: сумма

    Теперь рассмотрим несколько примеров с решениями на сумму арифметической прогрессии.

    Пусть дана числовая прогрессия следующего вида: 1, 2, 3, 4, ...,. Как рассчитать сумму 100 этих чисел?

    Благодаря развитию компьютерных технологий можно эту задачку решить, то есть последовательно сложить все числа, что вычислительная машина сделает сразу же, как только человек нажмет клавишу Enter. Однако задачу можно решить в уме, если обратить внимание, что представленный ряд чисел является прогрессией алгебраической, причем ее разность равна 1. Применяя формулу для суммы, получаем: S n = n * (a 1 + a n) / 2 = 100 * (1 + 100) / 2 = 5050.

    Любопытно отметить, что эта задача носит название "гауссовой", поскольку в начале XVIII века знаменитый немецкий еще будучи в возрасте всего 10 лет, смог решить ее в уме за несколько секунд. Мальчик не знал формулы для суммы алгебраической прогрессии, но он заметил, что если складывать попарно числа, находящиеся на краях последовательности, то получается всегда один результат, то есть 1 + 100 = 2 + 99 = 3 + 98 = ..., а поскольку этих сумм будет ровно 50 (100 / 2), то для получения правильного ответа достаточно умножить 50 на 101.

    Пример №6: сумма членов от n до m

    Еще одним типичным примером суммы арифметической прогрессии является следующий: дан такой чисел ряд: 3, 7, 11, 15, ..., нужно найти, чему будет равна сумма его членов с 8 по 14.

    Задача решается двумя способами. Первый из них предполагает нахождение неизвестных членов с 8 по 14, а затем их последовательное суммирование. Поскольку слагаемых немного, то такой способ не является достаточно трудоемким. Тем не менее предлагается решить эту задачу вторым методом, который является более универсальным.

    Идея заключается в получении формулы для суммы алгебраической прогрессии между членами m и n, где n > m - целые числа. Выпишем для обоих случаев два выражения для суммы:

    1. S m = m * (a m + a 1) / 2.
    2. S n = n * (a n + a 1) / 2.

    Поскольку n > m, то очевидно, что 2 сумма включает в себя первую. Последнее умозаключение означает, что если взять разность между этими суммами, и добавить к ней член a m (в случае взятия разности он вычитается из суммы S n), то получим необходимый ответ на задачу. Имеем: S mn = S n - S m + a m =n * (a 1 + a n) / 2 - m *(a 1 + a m)/2 + a m = a 1 * (n - m) / 2 + a n * n / 2 + a m * (1- m/2). В это выражение необходимо подставить формулы для a n и a m . Тогда получим: S mn = a 1 * (n - m) / 2 + n * (a 1 + (n - 1) * d) / 2 + (a 1 + (m - 1) * d) * (1 - m / 2) = a 1 * (n - m + 1) + d * n * (n - 1) / 2 + d *(3 * m - m 2 - 2) / 2.

    Полученная формула является несколько громоздкой, тем не менее сумма S mn зависит только от n, m, a 1 и d. В нашем случае a 1 = 3, d = 4, n = 14, m = 8. Подставляя эти числа, получим: S mn = 301.

    Как видно из приведенных решений, все задачи основываются на знании выражения для n-го члена и формулы для суммы набора первых слагаемых. Перед тем как приступить к решению любой из этих задач, рекомендуется внимательно прочитать условие, ясно понять, что требуется найти, и лишь затем приступать к решению.

    Еще один совет заключается в стремлении к простоте, то есть если можно ответить на вопрос, не применяя сложные математические выкладки, то необходимо поступать именно так, поскольку в этом случае вероятность допустить ошибку меньше. Например, в примере арифметической прогрессии с решением №6 можно было бы остановиться на формуле S mn = n * (a 1 + a n) / 2 - m * (a 1 + a m) / 2 + a m , и разбить общую задачу на отдельные подзадачи (в данном случае сначала найти члены a n и a m).

    Если возникают сомнения в полученном результате, то рекомендуется его проверять, как это было сделано в некоторых приведенных примерах. Как находить арифметическую прогрессию, выяснили. Если разобраться, то это не так сложно.

    Рассказать друзьям