Что такое фотон квант света. Фотонная теория света

💖 Нравится? Поделись с друзьями ссылкой

Диаграмма Фейнмана для рассеяния фотона на фотоне. Сами фотоны не могут взаимодействовать друг с другом, так как они - нейтральные частицы. Поэтому один из фотонов превращается в пару частица-античастица, с которой и взаимодействует другой фотон.

Физики из коллаборации ATLAS впервые зарегистрировали эффект рассеяния квантов света, фотонов, на фотонах. Этот эффект - одно из старейших предсказаний квантовой электродинамики, он был описан теоретически более 70 лет назад, но до сих пор не был обнаружен экспериментально. Интересно, что он нарушает классические уравнения Максвелла, являясь чисто квантовым явлением. Исследование было опубликовано на этой неделе в журнале Nature Physics, однако препринт статьи вышел еще в феврале 2017 года. Подробности о нем сообщал портал «Элементы.ру»

Одно из главных свойств классической максвелловской электродинамики - принцип суперпозиции для электромагнитных полей в вакууме. Он позволяет напрямую складывать поля от разных зарядов. Так как фотоны - это возбуждения полей, то в рамках классической электродинамики они не могут взаимодействовать друг с другом. Вместо этого они должны свободно проходить друг через друга.


Магниты детектора ATLAS

Квантовая электродинамика расширяет действие классической теории на движение заряженных частиц с околосветовыми скоростями, кроме того она учитывает квантование энергии полей. Благодаря этому в квантовой электродинамике можно объяснить необычные явления, связанные с высокоэнергетичными процессами - например, рождение из вакуума пар электронов и позитронов в полях высокой интенсивности.

В рамках квантовой электродинамики два фотона могут столкнуться друг с другом и рассеяться. Но этот процесс идет не напрямую - кванты света незаряжены и не могут взаимодействовать друг с другом. Вместо этого происходит промежуточное образование виртуальной пары частица-античастица (электрон-позитрон) из одного фотона, с которой и взаимодействует второй фотон. Такой процесс очень маловероятен для квантов видимого света. Оценить это можно из того, что свет от квазаров, удаленных на 10 миллиардов световых лет, достигает Земли. Но с ростом энергии фотонов вероятность процесса с рождением виртуальных электронов возрастает.

До сих пор интенсивности и энергий даже самых мощных лазеров не хватало для того, чтобы увидеть рассеяние фотонов напрямую. Однако исследователи уже нашли способ увидеть этот процесс косвенно, например, в процессах распада одного фотона на пару более низкоэнергетичных квантов вблизи тяжелого ядра атома.

Увидеть напрямую рассеяние фотона на фотоне удалось лишь в Большом адронном коллайдере. Процесс стал различимым в экспериментах после увеличения энергии частиц в ускорителе в 2015 году - с запуском Run 2. Физики коллаборации ATLAS исследовали процессы «ультрапериферийных» столкновений между тяжелыми ядрами свинца, разогнанными коллайдером до энергий 5 тераэлектронвольт на нуклон ядра. В таких столкновениях сами ядра не сталкиваются между собой напрямую. Вместо этого происходит взаимодействие их электромагнитных полей, в которых возникают фотоны огромных энергий (это связано с близостью скорости ядер к скорости света).


Событие рассеяния фотона на фотоне (желтые пучки)

Ультрапериферийные столкновения отличаются большой чистотой. В них, в случае успешного рассеяния, возникает лишь пара фотонов с направленными в разные стороны поперечными импульсами. В противоположность этому обычные столкновения ядер образуют тысячи новых частиц-осколков. Среди четырех миллиардов событий, собранных ATLAS в 2015 году на статистике столкновений ядер свинца ученым удалось отобрать 13, соответствующих рассеянию. Это примерно в 4,5 раза больше, чем фоновый сигнал, который ожидали увидеть физики.


Схема процесса рассеяния в коллайдере. Два ядра пролетают вблизи - их электромагнитные поля взаимодействуют

The ATLAS Collaboration

Коллаборация продолжит исследовать процесс в конце 2018 года, когда на коллайдере вновь пройдет сеанс столкновений тяжелых ядер. Интересно, что именно детектор ATLAS оказался подходящим для поиска редких событий рассеяния фотонов на фотонах, хотя для анализа столкновений тяжелых ядер был специально разработан другой эксперимент - ALICE.

Сейчас на Большом адронном коллайдере набор статистики протон-протонных столкновений. Недавно ученые об открытии на ускорителе первого дважды очарованного бариона, а еще весной физики коллаборации ATLAS о необычном избытке событий рождения двух бозонов слабого взаимодействия в области высоких энергий (около трех тераэлектроновольт). Он может указывать на новую сверхтяжелую частицу, однако статистическая значимость сигнала пока не превышает трех сигма.

Владимир Королёв

В современной трактовке гипотеза квантов утверждает, что энергия E колебаний атома или молекулы может быть равна h ν, 2h ν, 3h ν и т.д., но не существует колебаний с энергией в промежутке между двумя последовательными целыми, кратными . Это означает, что энергия не непрерывна, как полагали на протяжении столетий, а квантуется , т.е. существует лишь в строго определенных дискретных порциях. Наименьшая порция называется квантом энергии . Гипотезу квантов можно сформулировать и как утверждение о том, что на атомно-молекулярном уровне колебания происходят не с любыми амплитудами. Допустимые значения амплитуды связаны с частотой колебания ν .

В 1905 г. Эйнштейн выдвинул смелую идею, обобщавшую гипотезу квантов, и положил ее в основу новой теории света (квантовой теории фотоэффекта). Согласно теории Эйнштейна, свет с частотой ν не только испускается , как это предполагал Планк, но и распространяется и поглощается веществом отдельными порциями (квантами) , энергия которых . Таким образом, распространение света нужно рассматривать не как непрерывный волновой процесс, а как поток локализованных в пространстве дискретных световых квантов, движущихся со скоростью распространения света в вакууме (с ). Квант электромагнитного излучения получил название фотон .

Как мы уже говорили, испускание электронов с поверхности металла под действием падающего на него излучения соответствует представлению о свете как об электромагнитной волне, т.к. электрическое поле электромагнитной волны воздействует на электроны в металле и вырывает некоторые из них. Но Эйнштейн обратил внимание на то, что предсказываемые волновой теорией и фотонной (квантовой корпускулярной) теорией света детали фотоэффекта существенно расходятся.

Итак, мы можем измерить энергию вылетевшего электрона, исходя из волновой и фотонной теории. Чтобы ответить на вопрос, какая теория предпочтительней, рассмотрим некоторые детали фотоэффекта.

Начнем с волновой теории, и предположим, что пластина освещается монохроматическим светом . Световая волна характеризуется параметрами: интенсивностью и частотой (или длиной волны ). Волновая теория предсказывает, что при изменении этих характеристик происходят следующие явления:

· при увеличении интенсивности света число выбитых электронов и их максимальная энергия должны возрастать, т.к. более высокая интенсивность света означает большую амплитуду электрического поля, а более сильное электрическое поле вырывает электроны с большей энергией;

выбитых электронов; кинетическая энергия зависит только от интенсивности падающего света.

Совершенно иное предсказывает фотонная (корпускулярная) теория. Прежде всего, заметим, что в монохроматическом пучке все фотоны имеют одинаковую энергию (равную h ν). Увеличение интенсивности светового пучка означает увеличение числа фотонов в пучке, но не сказывается на их энергии, если частота остается неизменной. Согласно теории Эйнштейна, электрон выбивается с поверхности металла при соударении с ним отдельного фотона. При этом вся энергия фотона передается электрону, а фотон перестает существовать. Т.к. электроны удерживаются в металле силами притяжения, для выбивания электрона с поверхности металла требуется минимальная энергия A (которая называется работой выхода и составляет, для большинства металлов, величину порядка нескольких электронвольт). Если частота ν падающего света мала, то энергии и энергии фотона недостаточно для того, чтобы выбить электрон с поверхности металла. Если же , то электроны вылетают с поверхности металла, причем энергия в таком процессе сохраняется, т.е. энергия фотона (h ν) равна кинетической энергии вылетевшего электрона плюс работе по выбиванию электрона из металла:

(2.3.1)

Уравнение (2.3.1) называется уравнением Эйнштейна для внешнего фотоэффекта.

На основе этих соображений, фотонная (корпускулярная) теория света предсказывает следующее.

1. Увеличение интенсивности света означает увеличение числа налетающих фотонов, которые выбивают с поверхности металла больше электронов. Но так как энергия фотонов одна и та же, максимальная кинетическая энергия электрона не изменится (подтверждается I закон фотоэффекта ).

2. При увеличении частоты падающего света максимальная кинетическая энергия электронов линейно возрастает в соответствии с формулой Эйнштейна (2.3.1). (Подтверждение II закона фотоэффекта ). График этой зависимости представлен на рис. 2.3.

,


Рис. 2.3

3. Если частота ν меньше критической частоты , то выбивание электронов с поверхности не происходит (III закон ).

Итак, мы видим, что предсказания корпускулярной (фотонной) теории сильно отличаются от предсказаний волновой теории, но очень хорошо совпадают с тремя экспериментально установленными законами фотоэффекта.

Уравнение Эйнштейна было подтверждено опытами Милликена, выполненными в 1913–1914 гг. Основное отличие от опыта Столетова в том, что поверхность металла подвергалась очистке в вакууме. Исследовалась зависимость максимальной кинетической энергии от частоты и определялась постоянная Планка h .

В 1926 г. российские физики П.И. Лукирский и С.С. Прилежаев для исследования фотоэффекта применили метод вакуумного сферического конденсатора. Анодом служили посеребренные стенки стеклянного сферического баллона, а катодом – шарик (R ≈ 1,5 см) из исследуемого металла, помещенного в центр сферы. Такая форма электродов позволяла увеличить наклон ВАХ и тем самым более точно определить задерживающее напряжение (а следовательно, и h ). Значение постоянной Планка h , полученное из этих опытов, согласуется со значениями, найденными другими методами (по излучению черного тела и по коротковолновой границе сплошного рентгеновского спектра). Все это является доказательством правильности уравнения Эйнштейна, а вместе с тем и его квантовой теории фотоэффекта.

Для объяснения теплового излучения Планк предположил, что свет испускается квантами. Эйнштейн при объяснении фотоэффекта предположил, что свет поглощается квантами. Также Эйнштейн предположил, что свет и распространяется квантами, т.е. порциями. Квант световой энергии получил название фотон . Т.е. опять пришли к понятию корпускула (частица).

Наиболее непосредственное подтверждение гипотезы Эйнштейна дал опыт Боте, в котором использовался метод совпадения (рис. 2.4).


Рис. 2.4

Тонкая металлическая фольга Ф помещалась между двумя газоразрядными счетчиками Сч . Фольга освещалась слабым пучком рентгеновских лучей, под действием которых она сама становилась источником рентгеновских лучей (это явление называется рентгеновской флуоресценцией). Вследствие малой интенсивности первичного пучка, количество квантов, испускаемых фольгой, было невелико. При попадании квантов на счетчик механизм срабатывал и на движущейся бумажной ленте делалась отметка. Если бы излучаемая энергия распространялась равномерно во все стороны, как это следует из волновых представлений, оба счетчика должны были срабатывать одновременно и отметки на ленте приходились бы одна против другой. В действительности же наблюдалось совершенно беспорядочное расположение отметок. Это можно объяснить лишь тем, что в отдельных актах испускания возникают световые частицы, летящие то в одном, то в другом направлении. Так было экспериментально доказано существование особых световых частиц – фотонов.

Фотон обладает энергией . Для видимого света длина волны λ = 0,5 мкм и энергия Е = 2,2 эВ, для рентгеновских лучей λ = мкм и Е = 0,5 эВ.

Фотон обладает инертной массой , которую можно найти из соотношения :

;
(2.3.2)

Фотон движется со скоростью света c = 3·10 8 м/с. Подставим это значение скорости в выражение для релятивистской массы:

.

Фотон – частица, не обладающая массой покоя. Она может существовать, только двигаясь со скоростью света c .

Найдем связь энергии с импульсом фотона.

Мы знаем релятивистское выражение для импульса:

. (2.3.3)

И для энергии:

. (2.3.4)

Как отмечалось в § 184, законы фотоэффекта были объяснены в 1905 г. А. Эйнштейном с помощью представления о световых квантах (фотонах). Согласно этим представлениям энергия электромагнитного поля не может делиться на произвольные части, а излучается и поглощается всегда определенными порциями, равными . Здесь - частота колебаний для излучения, а - постоянная Планка. Именно эти порции энергии электромагнитного поля и получили название световых квантов или фотонов.

Квантовый характер электромагнитного излучения обычно проявляется в таких опытах, когда энергия каждого фотона достаточно велика, а число фотонов не слишком большое. Но во многих оптических экспериментах, в которых отчетливо наблюдаются волновые свойства света, мы встречаемся с противоположной ситуацией, когда энергии фотонов малы, а их число очень велико (см. пример в § 184). Именно поэтому квантовая природа света долго ускользала от внимания исследователей.

Как уже говорилось ранее, в опытах по фотоэффекту на проводниках было обнаружено, что максимальная кинетическая энергия электронов, вылетающих под действием света (так называемых фотоэлектронов), связана с работой выхода и частотой облучающих проводник электромагнитных волн соотношением

Это соотношение в 1916 г. было подтверждено американским физиком Р. Милликеном. Тонкие и тщательные измерения Милликена, выполненные по схеме опытов, описанных в § 183, позволили установить линейную зависимость между максимальной энергией, получаемой электроном от света, и частотой этого света, определить универсальный характер постоянной Планка и измерить эту величину . В дальнейших опытах частота падающего на поверхность металла излучения изменялась в широких пределах - от видимого света до рентгеновского и во всем исследованном интервале частот результаты измерений оказались в превосходном согласии с теорией.

В экспериментах с рентгеновским излучением представления о квантах были подвергнуты особенно тщательной и разносторонней проверке. Действительно, кванты видимого света (фотоны) обладают очень малой энергией - так, для желтого света и . Поэтому для регистрации такого света в большинстве опытов приходится иметь дело с большим числом фотонов в единицу времени. В соответствии с этим, действие, производимое летящими по всем направлениям световыми квантами, распределенными случайным образом, трудно отличить от действия волны, равномерно распространяющейся во все стороны. Чем больше энергия квантов, тем легче наблюдать действие отдельного кванта и легче, следовательно, осуществить опыт по наблюдению распространения энергии излучения не во все стороны равномерно, а вспышками то по одному, то по другому направлению. Энергия фотонов в рентгеновской области спектра значительно превышает энергию фотонов видимого света. Кроме того, в опытах с рентгеновским излучением легче осуществить условия для испускания небольшого числа квантов в единицу времени.

Для получения рентгеновского излучения нужно бомбардировать электронами анод рентгеновской трубки (см. §§ 151, 153). Всякая остановка (торможение) электронов в веществе анода сопровождается испусканием рентгеновского излучения. Теория световых квантов предсказывает, что в самом благоприятном случае вся кинетическая энергия электрона после его остановки перейдет полностью в один-единственный фотон, энергия которого определяется из условия . Если электрон разгонялся разностью потенциалов , то .

Итак, максимальная частота рентгеновского излучения задается соотношением

Действительно, измерения подтвердили, что рентгеновский спектр в таких экспериментах характеризуется коротковолновой границей

где - скорость света, а максимальная частота излучения согласуется с условием (209.2). Более короткие волны (большие значения частоты ) никогда при этом не наблюдаются, а более длинные волны соответствуют превращению лишь части кинетической энергии электрона в рентгеновское излучение. Определение коротковолновой границы рентгеновского спектра может быть выполнено весьма надежно. Поэтому такие опыты использовались для определения значения постоянной Планка (в соответствии с (209.2)). Наилучшие измерения, выполненные этим методом, дали . Эти данные согласуются с результатами измерения в опытах по фотоэффекту. Таким образом, теория квантов хорошо подтверждается не только опытами по поглощению энергии излучения (фотоэффект), но и опытами по ее испусканию.

Регулируя число электронов, бомбардирующих анод рентгеновской трубки, мы можем изменять число излучаемых рентгеновских фотонов. Если теперь подвергнуть металлическую пластинку воздействию рентгеновским излучением, вызывая тем самым выход фотоэлектронов, то, как показывают опыты, кинетическая энергия этих электронов будет равняться энергии рентгеновских квантов (так как энергия электронов и рентгеновских квантов в таких опытах составляет десятки киловольт, то работой выхода электронов из металла - несколько электронвольт - можно пренебречь).

Таким образом, весь цикл превращений энергии в этих опытах выглядит так: 1) превращение работы электрического поля в кинетическую энергию электрона в рентгеновской трубке; 2) превращение кинетической энергии электрона в энергию излучаемого электроном при резком торможении рентгеновского кванта; 3) поглощение фотона электроном и превращение его энергии в кинетическую энергию фотоэлектрона:

Такие опыты можно сильно разнообразить, пользуясь удобными условиями экспериментов с рентгеновским излучением. Все они показывают, что энергия передается в этих явлениях концентрированными порциями, а не накапливается постепенно, как это имело бы место при непрерывной передаче энергии в виде электромагнитной волны. Один из самых убедительных опытов такого типа был поставлен Абрамом Федоровичем Иоффе (1880-1960). Были выполнены также прямые эксперименты по регистрации отдельных фотонов, показывающие, что энергия рентгеновского излучения распространяется от анода трубки в разные стороны не одновременно, а в виде порций (квантов), летящих то в ту, то в другую сторону.

Таким образом, исследование фотоэффекта и опыты с рентгеновским излучением убедительно показали, что свет ведет себя в этих явлениях не как волна, а как некоторая частица - фотон, которая образуется при излучении, летит в каком-то направлении и, поглощаясь, целиком отдает свою энергию другой частице. Но если фотон ведет себя как частица с полной энергией , то он должен иметь и определенный импульс. Фотон имеет скорость, равную скорости света. Поэтому из общих формул релятивистской механики (см. §§ 199, 200) следует ожидать, что он будет обладать импульсом

(209.3)

Как мы уже видели раньше (§ 200), отличительной особенностью фотона является равенство нулю его массы покоя: фотон всегда движется со скоростью света и не может существовать, как покоящаяся частица.

То, что фотоны обладают импульсом, косвенным образом следует уже из опытов по световому давлению (§ 65). Способность света оказывать давление на отражающую или поглощающую поверхность следует интерпретировать как результат передачи импульса фотонов, подобно тому как отражающиеся от стенки сосуда молекулы газа передавая ей импульс, оказывают на нее давление (см. том I).

Очень важную роль в развитии представлений о фотонах как некоторых элементарных частицах сыграли опыты американского физика Артура Комптона (1892-1962), в которых непосредственно было показано, что фотоны при соударениях с электронами ведут себя, как частицы с энергией и импульсом, связанными между собой соотношением (209.3).

Исследуя рассеяние рентгеновского излучения в веществе из легких атомов (рис. 371) Комптон в 1923 г. обнаружил, что при этом происходит изменение длины волны рентгеновского излучения, и установил связь между изменением длины волны и углом рассеяния :

(209,4)

Рис. 371. а) Схема опыта Комптона. б) Спектор рассеянного рентгеновского излучения

Здесь постоянная была первоначально определена из опыта. Результаты этих опытов противоречат классическим представлениям о рассеянии электромагнитных волн атомами, согласно которым атом под действием падающего излучения должен испытывать вынужденные колебания и становиться источником рассеянных волн, имеющих ту же частоту (т. е. ту же длину волны), что и падающая волна.

Открытое Комптоном явление было, однако, прекрасно интерпретировано с помощью представления о фотонах. Опыты Комптона проводились с рентгеновскими квантами с энергией . Эта энергия велика по сравнению с энергией связи электронов в легких атомах (несколько электрон вольт). Поэтому можно считать, что в опытах происходило столкновение фотона со свободным электроном (а не с атомом как целым), напоминающее соударение упругих шаров. Применяя законы сохранения энергии и импульса (рис. 372) к этому соударению, мы получим

(209.5)

Рис. 372. Упругое столкновение фотона и электрона. До столкновения электрон покоится: - импульс падающего фотона, - импульс рассеянного фотона, - импульс электрона, - угол рассеяния фотона

При определении следует учитывать векторный характер закона сохранения импульса и использовать тригонометрическую теорему о связи между длинами сторон треугольника (рис. 372).

При рассеянии рентгеновских фотонов высоких энергии электроны отдачи, получившие от этих фотонов импульс, могут иметь скорости, сравнимые со скоростью света. Поэтому следует учитывать релятивистский рост их массы и пользоваться законами релятивистской механики (см §§ 199, 200), как это и было сделано в (209.5). Решение системы уравнений (209.5) приводит после некоторых преобразований к количественному объяснению соотношения для эффекта Комптона (209.4), установленного ранее экспериментальным путем (см. упражнение 19 в конце главы) В дальнейшем в опытах с квантами очень высоких энергий было обнаружено комптоновское рассеяние не только при взаимодействиях с электронами, но и с другими частицами, например с протонами и нейтронами. Таким образом, в этих экспериментах непосредственно установлено, что фотон ведет себя как элементарная частица не только в явлениях фотоэффекта и при излучении, но и в процессах взаимодействия с электронами и другими частицами.

Последующие опыты подтвердили представления о том, что фотон - это некоторая частица. Были найдены процессы, в которых фотон при взаимодействии с атомными ядрами исчезает, а вместо него образуется пара элементарных частиц: электрон и позитрон (частица, имеющая массу электрона и положительный заряд, равный по абсолютной величине заряду электрона), причем ядро остается при этом без изменений (см. § 223). В этих опытах было доказано, что электроны и позитроны не выделяются из ядра, ибо ядро остается неизменным, а возникают под действием света. Разлетевшиеся электрон, позитрон и ядро обладают энергиями и импульсами, которые они заимствуют у исчезнувшего фотона.

Был обнаружен и обратный процесс, когда электрон и позитрон, взаимодействуя друг с другом, перестают существовать как элементарные заряженные частицы: их заряды взаимно нейтрализуются, а их энергии покоя переходят в энергию образующейся в таком процессе пары фотонов, разлетающихся со скоростью света.

Как мы увидим в дальнейшем (гл. XXV), такие взаимные превращения одних частиц в другие являются очень важным и характерным их свойством, и в этом смысле фотон ничем не отличается от других микрочастиц, таких, как электроны, протоны и т. д.

Наконец, следует сказать, что фотоны, как и все другие частицы, могут испытывать на себе действие гравитационного поля. Так, точные наблюдения во время полных солнечных затмений за положением звезд, свет от которых проходит вблизи Солнца, показывают, что этот свет подвергается притяжению Солнца и отклоняется от своего первоначального пути. Качественно это можно понять, если учесть, что фотоны обладают энергией , которой соответствует «масса движения» до уровня поверхности Земли, удалось наблюдать изменение частоты фотонов, которое прекрасно совпало с теоретическими предсказаниями:

,

подтвердив тем самым, что фотоны подвержены гравитационному воздействию.

Таким образом, как мы смогли убедиться, рассмотрев многочисленные и разнообразные эксперименты, в ряде случаев свет надо рассматривать как поток корпускул - фотонов, обладающих свойствами, присущими другим микрочастицам. Однако для объяснения таких явлений, как интерференция и дифракция, приходится исходить из волновых свойств электромагнитного излучения. Оба аспекта природы - и волновой и корпускулярный - оказываются одинаково существенными. Поэтому для объяснения всех особенностей поведения излучения оказалось необходимым признать, что электромагнитные волны в известных условиях проявляют свойства потоков частиц. С равным правом можно высказать и обратное утверждение: частицы электромагнитного поля - фотоны - проявляют волновые свойства. Такой корпускулярно-волновой дуализм (двойственность) фотонов противоречит сложившимся классическим, обособленным друг от друга представлениям о волнах и частицах.

Сначала казалось, что фотоны, обладающие этими необычными свойствами, существенно отличаются от других частиц, например от электронов или протонов. Однако дальнейшее развитие физики микромира позволило установить, что корпускулярно-волновой дуализм отнюдь не является специфической особенностью фотонов, а имеет гораздо более общий характер.

Фотон является безмассовой частицей и способен существовать только в вакууме. Также он не имеет никаких электрических свойств, то есть его заряд равен нулю. В зависимости от контекста рассмотрения существует различные трактовки описания фотона. Классическая (электродинамика) представляет его как электромагнитную волну, имеющую круговую поляризацию. Также фотон проявляет свойства частицы. Такое двойственное представление о нем называется корпускулярно-волновым дуализмом. С другой стороны, квантовая электродинамика описывает частицу фотона как калибровочный бозон, позволяющий формировать электромагнитное взаимодействие.

Среди всех частиц Вселенной фотон имеет максимальную численность. Спин (собственный механический момент) фотона равен единице. Также фотон может находиться только в двух квантовых состояния, одно из которых имеет проекцию спина на определенное направление, равную -1, а другое – равную +1. Данное квантовое свойство фотона отражается в его классическом представлении как поперечность электромагнитной волны. Масса покоя фотона равна нулю, из чего следует его скорость распространения, равная скорости света.

Частица фотона не имеет электрических свойств (заряда) и достаточно стабильна, то есть фотон не способен самопроизвольно распадаться в вакууме. Данная частица излучается во многих физических процессах, например, при движении электрического заряда с ускорением, а также энергетических скачках ядра атома или самого атома из одного состояния в другое. Также фотон способен поглощаться при обратных процессах.

Корпускулярно-волновой дуализм фотона

Корпускулярно-волновой дуализм, свойственный фотону, проявляется в многочисленных физических экспериментах. Фотонные частицы участвуют в таких волновых процессах, как дифракция и интерференция, когда размеры препятствий (щелей, диафрагм) сравнимы с размером самой частицы. Особенно это ярко заметно в опытах с дифракцией одиночных фотонов на единственной щели. Также точечность и корпускулярность фотона проявляется в процессах поглощения и излучения объектами, размеры которых гораздо меньше длины волны фотона. Но с другой стороны, представление фотона как частицы тоже не является полноценным, ибо оно опровергается корреляционными экспериментами, основанными на запутанных состояниях элементарных частиц. Поэтому принято рассматривать частицу фотона, в том числе, и как волну.

Видео по теме

Источники:

  • Фотон 1099: всё о машине

Главное квантовое число - это целое число , которое является определением состояния электрона на энергетическом уровне. Энергетический уровень – это набор стационарных состояний электрона в атоме с близкими значениями энергии. Главное квантовое число определяет удаленность электрона от ядра, и характеризует энергию электронов, которые этот уровень занимают.

Совокупность чисел, которые характеризуют состояние , называются квантовыми числами. Волновую функцию электрона в атоме, его уникальное состояние определяют четыре квантовых числа – главное, магнитное, орбитальное и сплин – момент движения элементарной , выраженный в количественном значении. Главное квантовое число имеет n .Если главное квантовое число увеличивается, то соответственно увеличивается и орбита, и энергия электрона. Чем меньше значение n, тем больше значение энергетического взаимодействия электрона . Если суммарная энергия электронов является минимальной, то состояние атома называется невозбужденным или основным. Состояние атома с высоким значением энергии называется возбужденным. На уровне самое большое число электронов можно определить формулой N = 2n2.Когда случается переход электрона с одного энергетического уровня на другой, изменяется и главное квантовое число .В квантовой теории утверждение, что энергия электрона квантуется, то есть может принимать лишь дискретные, определенные значения. Чтобы знать состояние электрона в атоме необходимо учитывать энергию электрона, форму электронного и других параметров. Из области натуральных чисел, где n может быть равно 1 и 2, и 3 и так далее, главное квантовое число может принимать какое угодно значение. В квантовой теории энергетические уровни обозначают буквами, значение n - числами. Номер периода, где находится элемент, равен числу энергетических уровней в атоме, находящемся в основном состоянии. Все энергетические уровни состоят из подуровней. Подуровень состоит из атомных орбиталей, которые определяются, характеризуются главным квантовым число м n, орбитальным число м l и квантовым число м ml. Число подуровней каждого уровня не превышает значение n.Волновое уравнение Шредингера является самым удобным электронного строения атома.

Квантовая физика стала огромным толчком для развития науки в XX веке. Попытка описать взаимодействие мельчайших частиц совершенно иным образом, с помощью квантовой механики, когда некоторые проблемы классической механики уже казались неразрешимыми, произвела настоящую революцию.

Причины возникновения квантовой физики

Физика – , описывающая законы, по которым функционирует мир. Ньютоновская, или классическая возникла еще в Средние века, а ее предпосылки можно было видеть в древности. Она отлично объясняет все, что происходит на масштабах, воспринимаемых человеком без дополнительных измерительных приборов. Но люди столкнулись с множеством противоречий, когда начали изучать микро- и макромир, исследовать как мельчайшие частицы, из которых состоит вещество, так и гигантские галактики, окружающие родной человеку Млечный путь. Оказалось, что классическая физика подходит не для всего. Именно так появилась квантовая физика – наука, квантово-механические и квантово-полевые системы. Технические приемы для изучения квантовой физики – это квантовая механика и квантовая теория поля. Они также используются и в других, смежных разделах физики.

Основные положения квантовой физики, в сравнении с классической

Тем, кто только знакомится с квантовой физикой, ее положения нередко кажутся нелогичными или даже абсурдными. Однако, вникая в них глубже, проследить логику уже гораздо проще. Проще всего узнавать основные положения квантовой физики, сравнивая ее с классической.

Если в классической считается, что природа неизменна, какими бы способами ученые ее ни описывали, то в квантовой физике результат наблюдений будет очень сильно зависеть от того, каким способом измерения пользоваться.

Согласно законам механики Ньютона, которые являются основой классической физики, частица (или материальная точка) в каждый момент времени имеет определенное положение и скорость. В квантовой механике это не так. В ее основе – принцип суперпозиции расстояний. То есть, если квантовая частица может пребывать в одном и в другом состоянии, то, значит, она может пребывать и в третьем состоянии – сумме двух предыдущих (это называется линейная комбинация). Поэтому нельзя точно определить, где будет находиться частица в определенный момент времени. Можно лишь вычислить вероятность ее пребывания где бы то ни было.

Если в классической физике можно построить траекторию движения физического тела, то в квантовой – только распределение вероятностей, которое будет изменяться во времени. При этом максимум распределения всегда находится там, где его определяет классическая механика! Это очень важно, так как позволяет, во-первых, проследить связь между классической и квантовой механикой, а во-вторых, показывает, что они не противоречат друг другу. Можно сказать, что классическая физика является частным случаям квантовой.

Вероятность в классической физике появляется, когда исследователю неизвестны какие-то свойства объекта. В квантовой физике вероятность фундаментальна и присутствует всегда, независимо от степени незнания.

В классической механике допускаются любые значения энергии и скорости для частицы, а в квантовой – только определенные значения, «квантованные». Их называют собственными значениями, каждому из которых соответствует собственное состояние. Квант – это «порция» какой-либо величины, которую нельзя разделить на составляющие.

Один из фундаментальных принципов квантовой физики – Принцип неопределенности Гейзенберга. Речь в нем идет о том, что никак не получится одновременно выяснить и скорость, и положение частицы. Измерить можно только лишь что-то одно. Причем, чем лучше прибор измерит скорость частицы, тем меньше будет известно о ее положении, и наоборот.

Дело в том, что для того, чтобы частицу измерить, нужно на нее «посмотреть», то есть, отправить в ее сторону частицу света – фотон. Этот фотон, про который исследователю все известно, столкнется с измеряемой частицей и изменит свои и ее свойства. Это примерно то же самое, что измерять скорость движущегося автомобиля, посылая другой автомобиль с известной скоростью ему навстречу, а потом, по изменившейся скорость и траектории второго автомобиля исследовать первый. В квантовой физике исследуются настолько малые объекты, что даже фотоны – частицы света – изменяют их свойства.

Фотон - элементарная частица, квант электромагнитного излучения.энергии кванта (то есть дискретно), где - постоянная Планка. импульс.Если приписать фотону наличие т. н. «релятивистской массы» исходя из соотношения то она составит Массы покоя фотона нет.Фотоэффе́кт - это испускание электронов вещества под действием света (и, вообще говоря, любого электромагнитного излучения).формула Эйнштейна для фотоэффекта:

h ν = A вых + E k

где A out - т. н. работа выхода (минимальная энергия, необходимая для удаления электрона из вещества), E k -кинетическая энергия вылетающего электрона (в зависимости от скорости может вычисляться как кинетическая энергия релятивистской частицы, так и нет), ν - частота падающего фотона с энергией h ν, h - постоянная Планка.

Внешним фотоэффектом (фотоэлектронной эмиссией) называется испускание электронов веществом под действием электромагнитных излучений. 1) Максимальная начальная скорость фотоэлектронов не зависит от интенсивности падающего света, а определяется только его частотой. 2) Существует минимальная частота, при которой возможен фотоэффект(красная граница) 3) Ток насыщения зависит от интенсивности света, падающего на образец 4) Фотоэффект – безинерционное явление. Для прекращения фототока надо падать на анод отрицательное напряжение(напряжение запирания). Внутренний фотоэффект – изменение электронной проводимости вещества под действием света. Фотопроводимость свойственна полупроводникам. Электропроводность полупроводников ограничена нехваткой носителей заряда. При поглощении фотона электрон переходит из валентной зоны в зону проводимости. Как следствие образуется пара носителей заряда: электрон в зоне проводимости и дырка в валентной зоне. Оба носителя заряда при приложении к полупроводнику напряжения создают электрический ток.

При возбуждении фотопроводимости в собственном полупроводнике энергия фотона должна превышать ширину запрещенной зоны. В полупроводнике с примесями поглощение фотона может сопровождаться переходом из расположенного в запрещённой зоне уровня, что позволяет увеличить длину волны света, который вызывает фотопроводимость. Это обстоятельство важно для детектирования инфракрасного излучения. Условием высокой фотопроводимости является также большой коэффициент поглощения света, который реализуется в прямозонных полупроводниках.

16.Давление света.

Давление света - это давление, которое производят электромагнитные световые волны, падающие на поверхность какого-либо тела. Квантовая теория света объясняет световое давление как результат передачи фотонами своего импульса атомам или молекулам вещества. Пусть на поверхность абсолютно черного тела площадью S перпендикулярно к ней ежесекундно падает N фотонов: . Каждый фотон обладает импульсом. Полный импульс, получаемый поверхностью тела, равен. Световое давление:. - коэффициент отражения, - объёмная плотность энергии излучения. Классическаятеория

17.Тормозное и характеристическое рентгеновское излучение.

Рентге́новскоеизлуче́ние - электромагнитные волны, энергия фотонов которых лежит на шкале электромагнитных волн между ультрафиолетовымизлучением и гамма-излучением, что соответствует длинам волн от 10 −2 до 10 3 Å (от 10 −12 до 10 −7 м). Схематическое изображение рентгеновской трубки. X - рентгеновские лучи, K - катод, А - анод (иногда называемый антикатодом), С - теплоотвод, U h -напряжение накала катода, U a - ускоряющее напряжение, W in - впуск водяного охлаждения, W out - выпуск водяного охлаждения. Когда энергия бомбардирующих анод электронов становится достаточной для вырывания электронов из внутренних оболочек атома, на фоне тормозного излучения появляются резкие линии характеристического излучения. Частоты этих линий зависят от природы вещества анода, поэтому их и назвали характеристическими.

Тормозное излучение - электромагнитное излучение, испускаемое заряженной частицей при её рассеянии (торможении) в электрическом поле. dp/dλ hvне может быть больше, чем энергия eU. иззаконасохраненияэнергии Самым распространенным источником рент­геновского излучения является рентгеновская трубка, в которой сильно ускоренные электрическим полем электроны бомбардируют анод (металлическая мишень из тяже­лых металлов, например W или Pt), испытывая на нем резкое торможение. При этом возникает рентгеновское излучение, представляющее собой электромагнитные волны с длиной волны примерно 10 –12 -10 –8 м. Волновая природа рентгеновского излучения доказана опытами по его дифракции, рассмотренными в § 182.

Исследование спектрального состава рентгеновского излучения показывает, что его спектр имеет сложную структуру (рис. 306) и зависит как от энергии электронов, так и от материала анода. Спектр представляет собой наложение сплошного спектра, ограниченного со стороны коротких длин волн некоторой границей  min , называемой границей сплошного спектра, и линейчатого спектра - совокупности отдельных линий, появляющихся на фоне сплошного спектра.

Исследования показали, что характер сплошного спектра совершенно не зависит от материала анода, а определяется только энергией бомбардирующих анод электронов. Детальное исследование свойств этого излучения показало, что оно испускается бомбардирующими анод электронами в результате их торможения при взаимодействии с атомами мишени. Сплошной рентгеновский спектр поэтому называют тормозным спектром. Этот вывод находится в согласии с классической теорией излучения, так как при торможении движущихся зарядов должно действительно возникать излучение со сплошным спектром.

Из классической теории, однако, не вытекает существование коротковолновой границы сплошного спектра. Из опытов следует, что чем больше кинетическая энергия электронов, вызывающих тормозное рентгеновское излучение, тем меньше  min . Это обстоятельство, а также наличие самой границы объясняются квантовой теорией. Очевидно, что предельная энергия кванта соответствует такому случаю торможения, при котором вся кинетическая энергия электрона переходит в энергию кванта, т. е.

где U - разность потенциалов, за счет которой электрону сообщается энергия Е max , max - частота, соответствующая границе сплошного спектра. Отсюда граничная дли­на волны

Рассказать друзьям