Как найти гипотенузу если известна площадь. Как найти гипотенузу, если известны катеты

💖 Нравится? Поделись с друзьями ссылкой

Треугольник представляет собой геометрическое число, состоящее из трех сегментов, которые соединяют три точки, которые не лежат на одной линии. Точки, которые образуют треугольник, называются его точками, а сегменты бок о бок.

В зависимости от типа треугольника (прямоугольного, монохромного и т. Д.) Вы можете рассчитать сторону треугольника по-разному, в зависимости от исходных данных и условий проблемы.

Быстрая навигация для статьи

Чтобы вычислить стороны прямоугольного треугольника, используется теорема Пифагора, согласно которой квадрат гипотенузы равен сумме квадратов ноги.

Если мы отмечаем ноги буквами «a» и «b», а гипотенуза — «c», то страницы могут быть найдены со следующими формулами:

Если известны острые углы прямоугольного треугольника (a и b), его стороны могут быть найдены со следующими формулами:

Обрезанный треугольник

Треугольник называется равносторонним треугольником, в котором обе стороны одинаковы.

Как найти гипотенузу в двух ногах

Если буква «a» идентична одной и той же странице, «b» — основание, «b» — угол, противоположный основанию, «a» — смежный угол для вычисления страниц может использовать следующие формулы:

Два угла и боковая сторона

Если известны одна страница (c) и два угла (a и b) любого треугольника, формула синуса используется для вычисления оставшихся страниц:

Вы должны найти третье значение y = 180 — (a + b), потому что

сумма всех углов треугольника равна 180 °;

Две стороны и угол

Если известны две стороны треугольника (a и b) и угол между ними (y), для вычисления третьей стороны может быть использована теорема косинуса.

Как определить периметр прямоугольного треугольника

Треугольный треугольник представляет собой треугольник, один из которых равен 90 градусам, а два других — острые. расчет периметр такой треугольник в зависимости от количества известных сведений об этом.

Вам это понадобится

  • В зависимости от случая, навыки 2 трех сторон треугольника, а также один из его острых углов.

инструкции

первый Метод 1. Если известны все три страницы треугольник , Затем, независимо, перпендикулярно или не треугольно, периметр рассчитывается как: P = A + B + C, где возможно, c — гипотенуза; a и b — ноги.

второй Способ 2.

Если в прямоугольнике есть только две стороны, то, используя теорему Пифагора, треугольник может быть рассчитана по формуле: P = v (a2 + b2) + a + b или P = v (c2 — b2) + b + c.

третий Метод 3. Пусть гипотенуза c и острый угол? Учитывая прямоугольный треугольник, можно будет обнаружить периметр таким образом: P = (1 + sin?

четвёртая Метод 4. Говорят, что в правом треугольнике длина одной ноги равна а и, напротив, имеет острый угол. Затем вычислить периметр это треугольник будет выполняться по формуле: P = a * (1 / tg?

1 / сын? + 1)

пятые Способ 5.

Онлайн-расчет треугольника

Позвольте нашей ноге привести и быть включенным в нее, тогда диапазон будет рассчитываться как: P = A * (1 / CTG + 1 / + 1 cos?)

Похожие видео

Теорема Пифагора является основой любой математики. Определяет связь между сторонами истинного треугольника. Теперь указано 367 доказательств этой теоремы.

инструкции

первый Классическая школьная формулировка теоремы Пифагора звучит так: квадрат гипотенузы равен сумме квадратов ног.

Чтобы найти гипотенузу в прямоугольном треугольнике двух Catets, вы должны обратиться, чтобы построить квадрат длины ног, собрать их и взять квадратный корень из суммы. В оригинальной формулировке его высказывания рынок основан на гипотенузе, равном сумме квадратов из 2 квадратов производства Catete. Однако современная алгебраическая формулировка не требует введения представления области.

второй Например, прямоугольный треугольник, ноги которого составляют 7 см и 8 см.

Тогда, согласно теореме Пифагора, квадратная гипотенуза равна R + S = 49 + 64 = 113 см. Гипотенуза равна квадратному корню из числа 113.

Углы прямоугольного треугольника

Результатом стал необоснованный номер.

третий Если треугольники — ноги 3 и 4, то гипотенуза = 25 = 5. Когда вы извлекаете квадратный корень, вы получаете натуральное число. Числа 3, 4, 5 образуют пигагорейский триплет, так как они удовлетворяют соотношению x? + Y? = Z, что естественно.

Другими примерами пифагорейского триплета являются: 6, 8, 10; 5, 12, 13; 15, 20, 25; 9, 40, 41.

четвёртая В таком случае, если ноги идентичны друг другу, теорема Пифагора превращается в более примитивное уравнение. Например, пусть такая рука равна числу А и гипотенуза определена для С, а затем с? = Ap + Ap, C = 2A2, C = A? 2. В этом случае вам не нужен A.

пятые Теорема Пифагора — частный случай, который больше общей теоремы косинуса, который устанавливает связь между тремя сторонами треугольника для любого угла между двумя из них.

Совет 2: Как определить гипотенузу для ног и углов

Гипотенуза называется стороной в прямоугольном треугольнике, которая противоположна углу 90 градусов.

инструкции

первый В случае известных катетеров, а также острого угла прямоугольного треугольника может гипотенузы размер, равный отношению ноги к косинус / синус этого угла, если угол находился напротив / е включают в себя: Н = С1 (или С2) / грех, Н = С1 (или С2 ?) / cos ?. Пример: Пусть ABC задан неправильный треугольник с гипотенузой AB и под прямым углом C.

Пусть B равно 60 градусам и A 30 градусов. Длина ножки BC 8 см. Должна быть обнаружена длина гипотенузы AB. Для этого вы можете использовать один из вышеуказанных методов: AB = BC / cos60 = 8 см. AB = BC / sin30 = 8 см.

Гипотенуза — самая длинная сторона прямоугольника треугольник . Он расположен под прямым углом. Метод поиска гипотенузы прямоугольника треугольник в зависимости от исходных данных.

инструкции

первый Если ваши ноги перпендикулярны треугольник , то длина гипотенузы прямоугольника треугольник может быть обнаружено пифагорейским аналогом — квадрат длины гипотенузы равен сумме квадратов длин ног: c2 = a2 + b2, где a и b — длина ног правой треугольник .

второй Если известно, и одна из ног под острым углом, формула для нахождения гипотенузы будет зависеть от наличия или отсутствий под определенным углом по отношению к известному катету — смежно (катет расположена вблизи), или наоборот (расположено противоположный случай nego.V указанного угол равен доле гипотенуза ноги в косинусном угол: a = a / cos; E, с другой стороны, гипотенуза такая же, как отношение синусоидальных углов: da = a / sin.

Похожие видео

Полезные советы
Угловой треугольник, стороны которого связаны как 3: 4: 5, называемые египетской дельтой, из-за того, что эти фигуры широко используются архитекторами древнего Египта.

Это также самый простой пример треугольников Джерона, в котором страницы и область представлены целыми числами.

Треугольник называется прямоугольником, угол которого равен 90 °. Сторона, противоположная правому углу, называется гипотенузой, другая — ногами.

Если вы хотите найти, как прямоугольного треугольника, образованного некоторыми свойствами правильных треугольников, а именно тот факт, что сумма острых углов 90 °, который используется, и тот факт, что длина противоположной ноги составляет половину гипотенузы составляет 30 °.

Быстрая навигация для статьи

Обрезанный треугольник

Одним из свойств равного треугольника является то, что его два угла одинаковы.

Чтобы вычислить угол прямоугольного равного треугольника, вам нужно знать, что:

  • Это не хуже 90 °.
  • Значения острых углов определяются по формуле: (180 ° -90 °) / 2 = 45 °, т.е.

    Углы α и β равны 45 °.

Если известное значение одного из острых углов известно, другое можно найти по формуле: β = 180º-90º-α или α = 180º-90º-β.

Это соотношение наиболее часто используется, если один из углов составляет 60 ° или 30 °.

Ключевые понятия

Сумма внутренних углов треугольника равна 180 °.

Потому что это один уровень, два остаются острыми.

Вычислить треугольник онлайн

Если вы хотите их найти, вам нужно знать, что:

Другие способы

Значения острых углов прямоугольного треугольника могут быть вычислены из среднего значения — с линией от точки на противоположной стороне треугольника, а высота — линия представляет собой перпендикуляр, опущенной из гипотенузы под прямым углом.

Пусть медиана вытягивается от правого угла до середины гипотенузы, а h — высота. В этом случае оказывается, что:

  • sin α = b / (2 * s); sin β = a / (2 * s).
  • cos α = a / (2 * s); cos β = b / (2 * s).
  • sin α = h / b; sin β = h / a.

Две страницы

Если длины гипотенузы и одна из ног известны в прямоугольном треугольнике или с двух сторон, то для определения значений острых углов используются тригонометрические тождества:

  • α = arcsin (a / c), β = arcsin (b / c).
  • α = arcos (b / c), β = arcos (a / c).
  • α = arctg (a / b), β = arctg (b / a).

Длина прямоугольного треугольника

Площадь и площадь треугольника

периметр

Окружность любого треугольника равна сумме длин трех сторон. Общая формула для поиска треугольного треугольника:

где P — окружность треугольника, a, b и c его стороны.

Периметр равного треугольника можно найти путем последовательного объединения длин его сторон или умножения боковой длины на 2 и добавления к продукту длины основания.

Общая формула для нахождения равновесного треугольника будет выглядеть так:

где P — периметр равного треугольника, но либо b, b — основание.

Периметр равностороннего треугольника можно найти путем последовательного объединения длины его сторон или путем умножения длины любой страницы на 3.

Общая формула для нахождения обода равносторонних треугольников будет выглядеть так:

где P — периметр равностороннего треугольника, a — любая из его сторон.

область

Если вы хотите измерить область треугольника, вы можете сравнить ее с параллелограммом. Рассмотрим треугольник ABC:

Если мы возьмем тот же треугольник и зафиксируем его так, чтобы мы получили параллелограмм, мы получим параллелограмм той же высоты и основы, что и этот треугольник:

В этом случае общая сторона треугольников складывается вместе по диагонали формованного параллелограмма.

Из свойств параллелограмма. Известно, что диагонали параллелограмма всегда делятся на два равных треугольника, то поверхность каждого треугольника равна половине диапазона параллелограмма.

Так как площадь параллелограмма совпадает с продуктом его базовой высоты, площадь треугольника будет равна половине этого продукта. Таким образом, для ΔABC область будет одинаковой

Теперь рассмотрим прямоугольный треугольник:

Два одинаковых прямоугольных треугольника можно сгибать в прямоугольник, если он прислоняется к ним, что каждая другая гипотенуза.

Так как поверхность прямоугольника совпадает с поверхностью соседних сторон, площадь данного треугольника одинакова:

Отсюда можно заключить, что поверхность любого прямоугольного треугольника равна произведению ног, деленная на 2.

Из этих примеров можно сделать вывод, что поверхность каждого треугольника такая же, как произведение длины, а высота снижается до подложки, разделенной на 2.

Общая формула для поиска области треугольника будет выглядеть так:

где S — область треугольника, но его основание, но высота падает на дно a.

Как известно, геометрия – непростая наука, требующая особой аккуратности и точности в решении задач. Многие выражения и формулы, которые мы впоследствии используем в более сложных вычислениях, изложены в учебниках по математике 6-7 класса. Чтобы сделать процесс изучения тригонометрических функций более простым и приятным, в этой статье мы рассмотрим несколько коротких способ вычисления гипотенузы прямоугольного треугольника.

Как найти гипотенузу по катетам?

Вспомним немного теории: прямоугольным треугольником называют плоскую фигуру, у которой есть три угла. Один из них имеет величину 90º, а стороны называют катетами и гипотенузой. Та сторона, которая противолежит прямому углу, и есть гипотенуза, а остальные две – это прилежащие катеты. Главная игра сторон проявляется в теореме Пифагора, согласно которой гипотенуза равняется сумме квадратов катетов. Однако это лишь кажется запутанным, ведь на самом деле все гораздо проще.

Свойства геометрической фигуры

Перед тем, как найти гипотенузу треугольника, необходимо разобраться, какие особенности имеет данная фигура. Рассмотрим главные из них:

  1. В прямоугольном треугольнике оба острых угла в сумме будут равны 90º.
  2. Катет, лежащий против угла в 30º, будет равен ½ от величины гипотенузы.
  3. Если катет равен ½ от значения гипотенузы, тогда второй угол будет иметь такую же величину – 30º.

Найти гипотенузу в прямоугольном треугольнике можно несколькими способами. Самым простым решением является вычисление через катеты. Допустим, вам известны значения катетов сторон А и В. Тогда на выручку приходит теорема Пифагора, повествующая нам, что если поставить каждую величину катета в квадрат и просуммировать полученные данные, мы узнаем чему равна гипотенуза. Таким образом, нам необходимо просто извлечь значение квадратного корня:

Например, если катет А = 3 см, а катет В = 4 см, тогда вычисление будет иметь следующий вид:

Как найти гипотенузу через угол?

Еще одним способом, который поможет узнать, чему равна гипотенуза в прямоугольном треугольнике, является вычисление через заданный угол. Для этого нам потребуется вывести величину через формулу синуса. Допустим, нам известна величина катета (А) и значение противолежащего угла (α). Тогда все решение заключается в одной формуле: С=А/sin(α).

Например, если длина катета 40 см, а угол составляет 45°, тогда длину гипотенузы можно вывести следующим образом:

40/sin(45°) = 40/0,71 = 56,33.

Определить искомую величину можно также через косинус заданного угла. Допустим, нам известно значение одного катета (В) и острого прилежащего угла (α). Тогда для решения задачи понадобится одна формула: С=В/ cos(α).

К примеру, если длина катета имеет значение 50 см, а угол составляет 45°, тогда гипотенузу можно вычислить следующим образом:

50/cos(45°) = 50/0,71 = 80,42.

Таким образом, мы рассмотрели основные способы как узнать гипотенузу в треугольнике. В ходе решения задания важно сконцентрировать внимание на имеющихся данных, тогда найти неизвестную величину будет достаточно просто. Необходимо знать всего пару формул и процесс решения задач станет простым и приятным.

В самом начале напомним, что треугольник – это многогранник, у которого имеются 3 угла. Как найти гипотенузу прямоугольного треугольника, если известны другие величины треугольника?

Инструкция

  1. Известны длины катетов. В данном случае, гипотенузу можно вычислить, применяя теорему Пифагора. Данная теорема звучит так: сумма квадратов катетов равна квадрату гипотенузы. Из этого следует, чтобы рассчитать длину гипотенузы, необходимо возвести в квадрат поочередно величину каждого катета. После чего полученные цифры сложить, а из общего результата уже извлечь квадратный корень.
  2. Как находить гипотенузу в треугольнике KFB, если известен катет (ВК) и прилежащий к нему угол? Известный угол обозначим α. Одно из свойств прямоугольного треугольника гласит следующее, отношение длины катета прямоугольного треугольника к длине гипотенузы равно косинусу угла, расположенного между гипотенузой и этим катетом. Записать это можно следующим образом: FB=BK*cos(α).
  3. Известен другой катет (KF) и этот же самый угол α, Теперь уже он будет противолежащим. Гипотенуза также можно найти, если применить те же самые свойства прямоугольного треугольника. Здесь мы получим, отношение длины катета прямоугольного треугольника к длине его гипотенузы равно синусу угла, противолежащего катету. Записываем: FB=KF*sin(α).
  4. Как найти гипотенузу треугольника, если около него описана окружность, у которой известен ее радиус. Из свойств окружности, которая описана вокруг прямоугольного треугольника известно, что у такой окружности центр совпадает с точкой гипотенузы, которая разделяет его пополам. Иными словами – радиус равен половине гипотенузы. А это значит, что два радиуса составляют гипотенузу: FB=2*R.

Зная свойства прямоугольного треугольника и теорему Пифагора, очень просто вычислить длину гипотенузы. Если вам все же сложно запомнить все свойства, тогда просто выучите готовые формулы, в которые очень просто подставить известные значения, чтобы рассчитать длину гипотенузы.

Геометрия – наука не простая. Она может пригодиться как для школьной программы, так и в реальной жизни. Знание многих формул и теорем упростит геометрические вычисления. Одна из наиболее простых фигур в геометрии – это треугольник. Один из разновидностей треугольников, равносторонний, имеет свои особенности.

Особенности равностороннего треугольника

Согласно определению, треугольник – это многогранник, который имеет три угла и три стороны. Это плоская двумерная фигура, ее свойства изучаются в средней школе. По типу угла различают остроугольные, тупоугольные и прямоугольные треугольники. Прямоугольный треугольник – такая геометрическая фигура, где один из углов равен 90º. Такой треугольник имеет два катета (они создают прямой угол), и одну гипотенузу (она находится напротив прямого угла). В зависимости от того, какие величины известны, существует три простых способа вычислить гипотенузу прямоугольного треугольника.

Первый способ найти гипотенузу прямоугольного треугольника. Теорема Пифагора

Теорема Пифагора – древнейший способ вычислить любую из сторон прямоугольного треугольника. Звучит она так: “В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов”. Таким образом, чтобы вычислить гипотенузу, следует вывести квадратный корень из сумы двух катетов в квадрате. Для наглядности приведены формулы и схема.

Второй способ. Вычисление гипотенузы с помощью 2-х известных величин: катета и прилегающего угла

Одно из свойств прямоугольного треугольника гласит, что отношение длины катета к длине гипотенузы, равносильно косинусу угла между этиv катетом и гипотенузой. Назовем известный нам угол α. Теперь, благодаря известному определению, можно легко сформулировать формулу для вычисления гипотенузы: Гипотенуза = катет/cos(α)


Третий способ. Вычисление гипотенузы с помощью 2х известных величин: катета и противолежащего угла

Если известен противолежащий угол, возможно снова воспользоваться свойствами прямоугольного треугольника. Отношение длины катета и гипотенузы равносильно синусу противолежащего угла. Снова назовем известный угол α. Теперь для вычислений применим немного другую формулу:
Гипотенуза = катет/sin (α)


Примеры, которые помогут разобраться с формулами

Для более глубокого понимания каждой из формул, следует рассмотреть наглядные примеры. Итак, предположим, дан прямоугольный треугольник, где есть такие данные:

  • Катет – 8 см.
  • Прилегающий угол cosα1 – 0.8.
  • Противолежащий угол sinα2 – 0.8.

По теореме Пифагора: Гипотенуза = корень квадратный из (36+64) = 10 см.
По величине катета и прилежащего угла: 8/0.8 = 10 см.
По величине катета и противолежащего угла: 8/0.8 = 10 см.

Разобравшись в формуле, можно с легкостью вычислить гипотенузу с любыми данными.

Видео: Теорема Пифагора

Инструкция

Если необходимо рассчитать по теореме Пифагора, воспользуйтесь следующим алгоритмом:- Определите в треугольнике, какие стороны являются катетами, а – гипотенузой. Две стороны, образующие угол в девяносто градусов и есть катеты, оставшаяся третья – гипотенуза. (см )- Возведите во вторую степень каждый катет данного треугольника, то есть умножьте на себя. Пример 1. Пусть надо вычислить гипотенузу, если один катет в треугольнике – 12 см, а другой – 5 см. Во-первых, квадраты катетов равны: 12*12=144 см и 5*5 = 25 см.- Далее определите сумму квадратов катетов. Определенное число является гипотенузы , нужно избавиться от второй степени числа, чтобы найти длину этой стороны треугольника. Для этого извлеките из-под квадратного корня значение суммы квадратов катетов. Пример 1. 144+25=169. Корень квадратный из 169 будет 13. Следовательно, длина данной гипотенузы равна 13 см.

Другой способ вычисления длины гипотенузы заключается в терминологии синуса и углов в треугольнике. По определению: синус угла альфа - противолежащего катета к гипотенузе. То есть, глядя на рисунок, sin a = CВ / АВ. Отсюда, гипотенуза АВ = СВ / sin a.Пример 2. Пусть угол 30 градусам, а противолежащий ему катет - 4 см. Нужно найти гипотенузу. Решение: АВ = 4 см/ sin 30 = 4 см / 0,5 = 8 см. Ответ: длина гипотенузы равна 8 см.

Аналогичный способ нахождения гипотенузы из определения косинуса угла. Косинус угла - отношение прилежащего к нему катета и гипотенузы . То есть, cos а = АС/АВ, отсюда АВ = АС/cos а. Пример 3. В треугольнике АВС, АВ - гипотенуза, угол ВАС равен 60 градусам, катет АС - 2 см. Найти АВ.
Решение: АВ = АС/cos 60 = 2/0,5 = 4 см. Ответ: гипотенуза составляет 4 см в длине.

Полезный совет

При нахождении значения синуса или косинуса угла воспользуйтесь либо таблицей синусов и косинусов, либо таблицей Брадиса.

Совет 2: Как найти длину гипотенузы в прямоугольном треугольнике

Гипотенузой называют самую длинную из сторон в прямоугольном треугольнике, поэтому не удивительно, что с греческого языка это слово переводится как «натянутая». Эта сторона всегда лежит напротив угла в 90°, а стороны, образующие этот угол называют катетами. Зная длины этих сторон и величины острых углов в разных комбинациях этих значений можно вычислить и длину гипотенузы.

Инструкция

Если известны длины обоих треугольника (А и В), то используйте длины гипотенузы (С) самый, пожалуй, известный на математический постулат - теорему Пифагора. Он гласит, что квадрат длины гипотенузы сумме квадратов длин катетов, из чего вытекает, что вам следует вычислить корень из суммы возведенных в квадрат длин двух сторон: С=√(А²+В²). Например, если длина одного катета 15 , а - 10 сантиметрам, то длина гипотенузы составит приблизительно 18,0277564 сантиметра, так как √(15²+10²)=√(225+100)= √325≈18,0277564.

Если известна длина только одного из катетов (А) в прямоугольном треугольнике, а также величина угла, лежащего напротив него (α), то длину гипотенузы (С) можно с помощью одной из тригонометрических функций - синуса. Для этого разделите длину известной стороны на синус известного угла: С=А/sin(α). Например, если длина одного из катетов равна 15 сантиметрам, а величина угла в противоположной ему вершине треугольника составляет 30°, то длина гипотенузы будет равна 30 сантиметрам, так как 15/sin(30°)=15/0,5=30.

Если в прямоугольном треугольнике известна величина одного из острых углов (α) и длина прилегающего к нему катета (В), то для вычисления длины гипотенузы (С) можно использовать другую тригонометрическую функцию - косинус. Вам следует разделить длину известного катета на косинус известного угла: С=В/ cos(α). Например, если длина этого катета равна 15 сантиметрам, а величина острого угла, к нему прилегающего, составляет 30°, то длина гипотенузы составит приблизительно 17,3205081 сантиметров, так как 15/cos(30°)=15/(0,5*√3)=30/√3≈17,3205081.

Длиной принято обозначать расстояние между двумя точками какого-либо отрезка. Это может быть прямая, ломаная или замкнутая линия. Вычислить длину можно довольно простым путем, если знать некоторые другие показатели отрезка.

Инструкция

Если вам нужно найти длину стороны квадрата, то это не составит , если вам известна его площадь S. В связи с тем, что все стороны квадрата имеют , вычислить величину одной из них можно по формуле: a = √S.

Рассказать друзьям