Практические работы по математике раздел: «Функции, их свойства и графики» тема: Функции. Область определения и множество значений функции

💖 Нравится? Поделись с друзьями ссылкой

    1) Область определения функции и область значений функции .

    Область определения функции - это множество всех допустимых действительных значений аргумента x (переменной x ), при которых функция y = f(x) определена. Область значений функции - это множество всех действительных значений y , которые принимает функция.

    В элементарной математике изучаются функции только на множестве действительных чисел.

    2) Нули функции .

    Нуль функции – такое значение аргумента, при котором значение функции равно нулю.

    3) Промежутки знакопостоянства функции .

    Промежутки знакопостоянства функции – такие множества значений аргумента, на которых значения функции только положительны или только отрицательны.

    4) Монотонность функции .

    Возрастающая функция (в некотором промежутке) - функция, у которой большему значению аргумента из этого промежутка соответствует большее значение функции.

    Убывающая функция (в некотором промежутке) - функция, у которой большему значению аргумента из этого промежутка соответствует меньшее значение функции.

    5) Четность (нечетность) функции .

    Четная функция - функция, у которой область определения симметрична относительно начала координат и для любого х из области определения выполняется равенство f(-x) = f(x) . График четной функции симметричен относительно оси ординат.

    Нечетная функция - функция, у которой область определения симметрична относительно начала координат и для любого х из области определения справедливо равенство f(-x) = - f(x ). График нечетной функции симметричен относительно начала координат.

    6) Ограниченная и неограниченная функции .

    Функция называется ограниченной, если существует такое положительное число M, что |f(x)| ≤ M для всех значений x . Если такого числа не существует, то функция - неограниченная.

    7) Периодическость функции .

    Функция f(x) - периодическая, если существует такое отличное от нуля число T, что для любого x из области определения функции имеет место: f(x+T) = f(x). Такое наименьшее число называется периодом функции. Все тригонометрические функции являются периодическими. (Тригонометрические формулы).

    19. Основные элементарные функции, их свойства и графики. Применение функ-ций в экономике.

Основные элементарные функции. Их свойства и графики

1. Линейная функция.

Линейной функцией называется функция вида , где х - переменная, а и b - действительные числа.

Число а называют угловым коэффициентом прямой, он равен тангенсу угла наклона этой прямой к положительному направлению оси абсцисс. Графиком линейной функции является прямая линия. Она определяется двумя точками.

Свойства линейной функции

1. Область определения - множество всех действительных чисел: Д(y)=R

2. Множество значений - множество всех действительных чисел: Е(у)=R

3. Функция принимает нулевое значение при или.

4. Функция возрастает (убывает) на всей области определения.

5. Линейная функция непрерывная на всей области определения, дифференцируемая и .

2. Квадратичная функция.

Функция вида , где х - переменная, коэффициенты а, b, с - действительные числа, называетсяквадратичной.

Инструкция

Вспомните, что функция - это такая зависимость переменной Y от переменной Х, при которой каждому значению переменной X соответствует единственное значение переменной Y.

Переменная X является независимой переменной или аргументом. Переменная Y - зависимая переменная. Считается также, что переменная Y является функцией от переменной X. Значения функции равны значениям зависимой переменной.

Для наглядности записывайте выражения. Если зависимость переменной Y от переменной X является функцией, то это записывают так: y=f(x). (Читают: у равно f от х.) Символом f(x) обозначьте значение функции, соответствующее значению аргумента, равному х.

Исследование функции на четность или нечетность - один из шагов общего алгоритма исследования функции, необходимого для построения графика функции и изучения её свойств. В этом шаге необходимо определить, является ли функция четной или нечетной. Если про функцию нельзя сказать, что она является четной или нечетной, то говорят, что это функция общего вида.

Инструкция

Подставьте аргумента x аргумент (-x) и посмотрите, что получилось в итоге. Сравните с изначальной функцией y(x). Если y(-x)=y(x), имеем четную функцию. Если y(-x)=-y(x), имеем нечетную функцию. Если y(-x) не равняется y(x) и не равняется -y(x), имеем функцию общего вида.

Все операции с функцией можно производить только в том множестве, где она определена. Поэтому при исследовании функции и построения ее графика первую роль играет нахождение области определения.

Инструкция

Если функция имеет вид y=g(x)/f(x), решите f(x)≠0, потому что знаменатель дроби не может быть равен нулю. Например, y=(x+2)/(x−4), x−4≠0. То есть областью определения будет множество (-∞; 4)∪(4; +∞).

Когда при определении функции присутствует корень четной , решите неравенство, где значение будет больше или равно нуля. Корень четной степени может быть взят только из неотрицательного числа. Например, y=√(x−2), x−2≥0. Тогда областью определения является множество , то есть если y=arcsin(f(x)) или y=arccos(f(x)), нужно решить двойное неравенство -1≤f(x)≤1. Например, y=arccos(x+2), -1≤x+2≤1. Областью определения будет отрезок [-3; -1].

Наконец, если задана комбинация различных функций, то область определения представляет собой пересечение областей определения всех этих функций. Например, y=sin(2*x)+x/√(x+2)+arcsin(x−6)+lg(x−6). Сначала найдите область определения всех слагаемых. Sin(2*x) определен на всей числовой прямой. Для функции x/√(x+2) решите неравенство x+2>0 и область определения будет (-2; +∞). Область определения функции arcsin(x−6) задается двойным неравенством -1≤x-6≤1, то есть получается отрезок . Для логарифма имеет место неравенство x−6>0, а это есть интервал (6; +∞). Таким образом, областью определения функции будет множество (-∞; +∞)∩(-2; +∞)∩∩(6; +∞), то есть (6; 7].

Видео по теме

Источники:

  • область определения функции с логарифмом

Функция - это понятие, отражающее связь между элементами множеств или другими словами это «закон», по которому каждому элементу одного множества (называемому областью определения) ставится в соответствие некоторый элемент другого множества (называемого областью значений).

Понятие функции и всё, что с ним связано, относится к традиционно сложным, не до конца понятым. Особым камнем преткновения при изучении функции и подготовке к ЕГЭ являются область определения и область значений (изменения) функции.
Нередко учащиеся не видят разницы между областью определения функции и областью её значений.
И если задачи на нахождение области определения функции учащимся удаётся освоить, то задачи на нахождение множества значений функции вызывают у них немалые затруднения.
Цель данной статьи: ознакомление с методами нахождения значений функции.
В результате рассмотрения данной темы был изучен теоретический материал, рассмотрены способы решения задач на нахождение множеств значений функции, подобран дидактический материал для самостоятельной работы учащихся.
Данная статья может быть использована учителем при подготовке учащихся к выпускным и вступительным экзаменам, при изучении темы “Область значения функции” на факультативных занятиях элективных курсах по математике.

I. Определение области значений функции.

Областью (множеством) значений E(у) функции y = f(x) называется множество таких чисел y 0 , для каждого из которых найдётся такое число x 0 , что: f(x 0) = y 0 .

Напомним области значений основных элементарных функций.

Рассмотрим таблицу.

Функция Множество значений
y = kx+ b E(y) = (-∞;+∞)
y = x 2n E(y) =
y = cos x E(y) = [-1;1]
y = tg x E(y) = (-∞;+∞)
y = ctg x E(y) = (-∞;+∞)
y = arcsin x E(y) = [-π/2 ; π/2]
y = arcos x E(y) =
y = arctg x E(y) = (-π/2 ; π/2)
y = arcctg x E(y) = (0; π)

Заметим также, что областью значения всякого многочлена чётной степени является промежуток , где n – наибольшее значение этого многочлена.

II. Свойства функций, используемые при нахождении области значений функции

Для успешного нахождения множества значений функции надо хорошо знать свойства основных элементарных функций, особенно их области определения, области значений и характер монотонности. Приведём свойства непрерывных, монотонных дифференцируемых функций, наиболее часто используемые при нахождении множества значений функций.

Свойства 2 и 3, как правило, используются вместе свойством элементарной функции быть непрерывной в своей области определения. При этом наиболее простое и краткое решение задачи на нахождение множества значений функции достигается на основании свойства 1, если несложными методами удаётся определить монотонность функции. Решение задачи ещё упрощается, если функция, вдобавок, – чётная или нечётная, периодическая и т.д. Таким образом, при решении задач на нахождение множеств значений функции следует по мере надобности проверять и использовать следующие свойства функции:

  • непрерывность;
  • монотонность;
  • дифференцируемость;
  • чётность, нечётность, периодичность и т.д.

Несложные задачи на нахождение множества значений функции в большинстве своём ориентированны:

а) на использование простейших оценок и ограничений: (2 х >0, -1≤sinx?1, 0≤cos 2 x?1 и т.д.);

б) на выделение полного квадрата: х 2 – 4х + 7 = (х – 2) 2 + 3;

в) на преобразование тригонометрических выражений: 2sin 2 x – 3cos 2 x + 4 = 5sin 2 x +1;

г) использование монотонности функции x 1/3 + 2 x-1 возрастает на R.

III. Рассмотрим способы нахождения областей значений функций.

а) последовательное нахождение значений сложных аргументов функции;
б) метод оценок;
в) использование свойств непрерывности и монотонности функции;
г) использование производной;
д) использование наибольшего и наименьшего значений функции;
е) графический метод;
ж) метод введения параметра;
з) метод обратной функции.

Раскроем суть этих методов на конкретных примерах.

Пример 1. Найдите область значений E(y) функции y = log 0,5 (4 – 2·3 x – 9 x).

Решим этот пример методом последовательного нахождения значений сложных аргументов функции. Выделив полный квадрат под логарифмом, преобразуем функцию

y = log 0,5 (5 – (1 + 2·3 x – 3 2x)) = log 0,5 (5 – (3 x + 1) 2)

И последовательно найдём множества значений её сложных аргументов:

E(3 x) = (0;+∞), E(3 x + 1) = (1;+∞), E(-(3 x + 1) 2 = (-∞;-1), E(5 – (3 x +1) 2) = (-∞;4)

Обозначим t = 5 – (3 x +1) 2 , где -∞≤t≤4 . Тем самым задача сводится к нахождению множества значений функции y = log 0,5 t на луче (-∞;4) . Так как функция y = log 0,5 t определена лишь при, то её множество значений на луче (-∞;4) совпадает со множеством значений функции на интервале (0;4), представляющем собой пересечение луча (-∞;4) с областью определения (0;+∞) логарифмической функции. На интервале (0;4) эта функция непрерывна и убывает. При t > 0 она стремится к +∞, а при t = 4 принимает значение -2, поэтому E(y) = (-2, +∞).

Пример 2. Найдите область значений функции

y = cos7x + 5cosx

Решим этот пример методом оценок, суть которого состоит в оценке непрерывной функции снизу и сверху и в доказательстве достижения функцией нижней и верхней границы оценок. При этом совпадение множества значений функции с промежутком от нижней границы оценки до верхней обуславливается непрерывностью функции и отсутствием у неё других значений.

Из неравенств -1≤cos7x?1, -5≤5cosx?5 получим оценку -6≤y?6. При x = р и x = 0 функция принимает значения -6 и 6, т.е. достигает нижней и верхней границы оценки. Как линейная комбинация непрерывных функций cos7x и cosx, функция y непрерывна на всей числовой оси, поэтому по свойству непрерывной функции она принимает все значения с -6 до 6 включительно, и только их, так как в силу неравенств -6≤y?6 другие значения у неё невозможны. Следовательно, E(y) = [-6;6].

Пример 3. Найдите область значений E(f) функции f(x) = cos2x + 2cosx.

По формуле косинуса двойного угла преобразуем функция f(x) = 2cos 2 x + 2cosx – 1 и обозначим t = cosx. Тогда f(x) = 2t 2 + 2t – 1. Так как E(cosx) =

[-1;1], то область значений функции f(x) совпадает со множеством значений функции g(t) = 2t 2 + 2t – 1 на отрезке [-1;1], которое найдём графическим методом. Построив график функции y = 2t 2 + 2t – 1 = 2(t + 0,5) 2 – 1,5 на промежутке [-1;1], находим E(f) = [-1,5; 3].

Замечание – к нахождению множества значений функции сводятся многие задачи с параметром, связанные, в основном, с разрешимостью и числом решений уравнения и неравенств. Например, уравнение f(x) = а разрешимо тогда и только тогда, когда

a E(f) Аналогично, уравнение f(x) = а имеет хотя бы один корень, расположенный на некотором промежутке Х, или не имеет ни одного корня на этом промежутке тогда и только тогда, когда а принадлежит или не принадлежит множеству значений функции f(x) на промежутке Х. Также исследуются с привлечением множества значений функции и неравенства f(x)≠ а, f(x)> а и т.д. В частности, f(x)≠ а для всех допустимых значений х, если a E(f)

Пример 4. При каких значениях параметра а уравнение (x + 5) 1/2 = a(x 2 + 4) имеет единственный корень на отрезке [-4;-1].

Запишем уравнение в виде (x + 5) 1/2 / (x 2 + 4) = a . Последнее уравнение имеет хотя бы один корень на отрезке [-4;-1] тогда и только тогда, когда а принадлежит множеству значений функции f(x) = (x + 5) 1/2 / (x 2 + 4) на отрезке [-4;-1]. Найдём это множество, используя свойство непрерывности и монотонности функции.

На отрезке [-4;-1] функция y = xІ + 4 непрерывна, убывает и положительна, поэтому функция g(x) = 1 /(x 2 + 4) непрерывна и возрастает на этом отрезке, так как при делении на положительную функцию характер монотонности функции меняется на противоположный. Функция h(x) = (x + 5) 1/2 непрерывна и возрастает в своей области определения D(h) = [-5;+∞) и, в частности на отрезке [-4;-1], где она, кроме того, положительна. Тогда функция f(x)=g(x)·h(x) , как произведение двух непрерывных, возрастающих и положительных функций, также непрерывна и возрастает на отрезке [-4;-1], поэтому её множество значений на [-4;-1] есть отрезок [f(-4); f(-1) ] = . Следовательно, уравнение имеет решение на отрезке [-4;-1], причём единственное (по свойству непрерывной монотонной функции), при 0,05 ≤ a ≤ 0,4

Замечание. Разрешимость уравнения f(x) = a на некотором промежутке Х равносильна принадлежности значений параметра а множеству значений функции f(x) на Х. Следовательно, множество значений функции f(x) на промежутке Х совпадает с множеством значений параметра а , для которых уравнение f(x) = a имеет хотя бы один корень на промежутке Х. В частности, область значений E(f) функции f(x) совпадает с множеством значений параметра а , для которых уравнение f(x) = a имеет хотя бы один корень.

Пример 5. Найдите область значений E(f) функции

Решим пример методом введения параметра, согласно которому E(f) совпадает с множеством значений параметра а , для которых уравнение

имеет хотя бы один корень.

При а=2 уравнение является линейным – 4х – 5 = 0 с ненулевым коэффициентом при неизвестной х, поэтому имеет решение. При а≠2 уравнение является квадратным, поэтому оно разрешимо тогда и только тогда, когда его дискриминант

Так как точка а = 2 принадлежит отрезку

то искомым множеством значений параметра а, значит, и областью значений E(f) будет весь отрезок.

Как непосредственное развитие метода введения параметра при нахождении множества значений функции, можно рассматривать метод обратной функции, для нахождения которой надо решить относительно х уравнение f(x)= y , считая y параметром. Если это уравнение имеет единственное решение x =g(y) , то область значений E(f) исходной функции f(x) совпадает с областью определения D(g) обратной функции g(y) . Если же уравнение f(x)= y имеет несколько решений x =g 1 (y) , x =g 2 (y) и т.д., то E(f) равна объединению областей определений функции g 1 (y), g 2 (y) и т.д.

Пример 6. Найдите область значений E(y) функции y = 5 2/(1-3x).

Из уравнения

найдём обратную функцию x = log 3 ((log 5 y – 2)/(log 5 y)) и её область определения D(x) :

Так как уравнения относительно х имеет единственное решение, то

E(y) = D(x) = (0; 1)(25;+∞ ).

Если область определения функции состоит из нескольких промежутков или функция на разных промежутках задана разными формулами, то для нахождения области значений функции надо найти множества значений функции на каждом промежутке и взять их объединение.

Пример 7. Найдите области значений f(x) и f(f(x)) , где

f(x) на луче (-∞;1], где она совпадает с выражением 4 x + 9·4 -x + 3. Обозначим t = 4 x . Тогда f(x) = t + 9/t + 3 , где 0 < t ≤ 4 , так как показательная функция непрерывно возрастает на луче (-∞;1] и стремится к нулю при х → -∞. Тем самым множество значений функции f(x) на луче (-∞;1] совпадает с множеством значений функции g(t) = t + 9/t + 3 , на промежутке (0;4], которое найдём, используя производную g’(t) = 1 – 9/t 2 . На промежутке (0;4] производная g’(t) определена и обращается там в нуль при t = 3 . При 0<t <3 она отрицательна, а при 3<t <4 положительна. Следовательно, в интервале (0;3) функция g(t) убывает, а в интервале (3;4) она возрастает, оставаясь непрерывной на всём промежутке (0;4), поэтом g(3)= 9 – наименьшее значений этой функции на промежутке (0;4], в то время как её наибольшее значение не существует, так при t→0 справа функция g(t)→+∞. Тогда, по свойству непрерывной функции, множеством значений функции g(t) на промежутке (0;4], а значит, и множеством значений f(x) на (-∞;-1], будет луч .

Теперь, объединив промежутки – множества значений функции f(f(x)) , обозначим t = f(x) . Тогда f(f(x)) = f(t) , где При указанных t функция f(t) = 2cos(x-1) 1/2 + 7 и она снова принимает все значения от 5 до 9 включительно, т.е. область значений E(fІ) = E(f(f(x))) = .

Аналогично, обозначив z = f(f(x)) , можно найти область значений E(f 3) функции f(f(f(x))) = f(z) , где 5 ≤ z ≤ 9 и т.д. Убедитесь, что E(f 3) = .

Наиболее универсальным методом нахождения множества значений функции является использование наибольшего и наименьшего значений функции на заданном промежутке.

Пример 8. При каких значениях параметра р неравенcтво 8 x -р ≠ 2 x+1 – 2 x выполняется для всех -1 ≤ x < 2.

Обозначив t = 2 x , запишем неравенство в виде р ≠ t 3 – 2t 2 + t . Так как t = 2 x – непрерывная возрастающая функция на R, то при -1 ≤ x < 2 переменная

2 -1 ≤ t <2 2 ↔

0,5 ≤ t < 4, и исходное неравенство выполняется для всех -1 ≤ x < 2 тогда и только тогда, когда р отлична от значений функции f(t) = t 3 – 2t 2 + t при 0,5 ≤ t < 4.

Найдём сначала множество значений функции f(t) на отрезке , где она всюду имеет производную f’(t) =3t 2 – 4t + 1 . Следовательно, f(t) дифференцируема, значит, и непрерывна на отрезке . Из уравнения f’(t) = 0 найдём критические точки функции t = 1/3, t = 1, первая из которых не принадлежит отрезку , а вторая принадлежит ему. Так как f(0,5) = 1/8, f(1) = 0, f(4) = 36, то, по свойству дифференцируемой функции, 0 – наименьшее, а 36 – наибольшее значение функции f(t) на отрезке . Тогда f(t), как непрерывная функция, принимает на отрезке все значения от 0 до 36 включительно, причём значение 36 принимает только при t = 4 , поэтому при 0,5 ≤ t < 4, она принимает все значения из промежутка }

Рассказать друзьям