Строение глаза человека. Как он устроен

💖 Нравится? Поделись с друзьями ссылкой

Орган зрения (или зрительной системы) всегда парный, его основная функция – восприятия электромагнитного излучения. Функциональный пик приходится на дневные часы, а с наступлением темного времени суток максимум светочувствительности стремится к части спектра с короткими волнами. Таким образом, в сумерки изменяется цветовоспроятие: к примеру, красные предметы начинают казаться черными, а объекты синих оттенков, – наоборот, кажутся светлыми.

Орган зрения человека, состоящий из глазного яблока со зрительным нервом и вспомогательных органов, находится в глазнице, стенки которой образованы костями мозгового и лицевого черепа. К вспомогательным органам глазного яблока относят: глазницу, выстланную изнутри надкостницей, веки и ресницы, слезный аппарат, конъюнктиву, мышцы глазного яблока, жировое тело глазницы и влагалище глазного яблока. В анатомическом отношении глазное яблоко состоит из трех оболочек и ядра.

В этом материале вы сможете подробно ознакомиться со структурной анатомией и физиологией органа зрения, а также узнать о проводящем пути зрительного анализатора.

Функциональная анатомия органа зрения: системы и их структура

В функциональной анатомии органа зрения можно выделить следующие системы.

Таблица «Строение и функции органа зрения»:

Функциональные системы органа зрения

Функции органа зрения

Компоненты структуры органы зрения

Формообразующая система

придает определенную форму глазному яблоку

наружная оболочка глазного яблока и водянистая влага

Оптическая система

обеспечивает прохожде­ние, преломление и фокусировку лучей света

роговица, водянистая влага, хрусталик и стекловидное тело

Рецепторная система

обеспечивает восприятие зрительной информации, ее кодировку и передачу на соответствующие нейроны ЦНС

сетчатая оболочка

Трофическая система

обеспечивает продукцию и отток внутриглазной жидкости

кровеносные сосуды, чувствительные нервы и нервные окончания

В следующем разделе статьи вы узнаете о строении глазного яблока человека.

Глазное яблоко человека: особенности строения

Глазное яблоко, bulbus oculi , имеет форму шара, у которого спереди находится незначительная выпуклость. Она соответствует местоположению прозрачной его части - роговицы. Остальная (большая) часть наружной оболочки глаза покрыта склерой. В связи с этим в строении глазного яблока выделяют два полюса: передний и задний, polus anterior etpolusposterior. Передний полюс соответствует наиболее выступающей точке роговицы, задний - располагается на 2 мм латеральнее места выхода зрительного нерва. Линия, соединяющая полюса глаза, называется анатомической осью глаза. В свою очередь, в ней различают наружную и внутреннюю оси глазного яблока. Наружная ось, axis bulbi externus, простирается от наружной поверхности роговицы до наружной поверхности заднего полюса глазного яблока и составляет 24 мм. Внутренняя ось, axis bulbi internus (от внутренней поверхности роговицы до сетчатки в области заднего полюса), составляет 21,75 мм. Длина анатомической оси глаза в офтальмологической практике измеряется с помощью ультразвуковой биометрии. Причем с возрастом она практически не изменяется. Лица, у которых длина анатомической оси соответствует указанным величинам (24 и 21,75 мм), являются эмметропами.

Одна из особенностей физиологии органа зрения заключается в том, что при удлинении внутренней оси лучи света фокусируются перед сетчаткой. Это состояние носит название близорукость, или миопия (от греч. myopos - щурящий глаз). Данная категория людей именуется миопами. При укорочении данной оси лучи света фокусируются за сетчаткой глаза, что определяется как дальнозоркость, или гиперметропия.

Окружность глазного яблока, мысленно проведенная по склере на расстоянии, равноудаленном от его полюсов, носит название - экватор глаза. У взрослого эмметропа он равен 77,6 мм.

В анатомии органа зрения выделяют зрительную ось глазного яблока, axis opticus, которая простирается от переднего полюса до центральной ямки сетчатки - точки наилучшего видения.

Организация органа зрения: оболочки глазного яблока

Глазное яблоко состоит из трех оболочек (фиброзной, сосудистой и внутренней), которые последовательно друг за другом окружают структуры, составляющие ядро.

Таблица «Организация органа зрения»:

Оболочки глазного яблока

Составные части оболочек

Отличительные признаки частей глаза как органа зрения

Tunica fibrosa bulbi
выполняет формообразующую (каркасную) и защитную функции

cornea (4\5 глазного яблока)

прозрачность, отсутствие крове­носных сосудов, сферичность, зеркальный блеск, высокая тактильная чувствительность, высокая преломляющая способность

sclera (5/6 глазного яблока)

состоит из плотной соединительной ткани, почти лишена сосудов и нервных окончаний, к ней прикрепляются 6 мышц глазного яблока, на границе с роговицей - sinus veno - sus sclerae ; в области экватора - 4 вортикозные вены

Tunica vasculosa bulbi прочно сращена с внутренней поверхностью склеры в области лимба и у места выхода зрительного нерва

iris , видна через роговицу как диск с отверстием в центре (зрачок, pupilla )

в толщине радужки лежат мышцы- антагонисты ( muscutus sphincter ри- pillae , muscutus dilatator pupillae ); передняя поверхность радужки образована сосудами, соединитель­нотканными тяжами и клетками- хроматофорами, задняя поверхность выстлана клетками заднего эпителия, богатыми пигментом; margo ciliaris срастается с реснич­ным телом при помощи ligamentum pectinatum iridis в радужно-рогович­ном углу, angulus iridocomealis , где имеет щели - Фонтановы про­странства

corpus ciliare - утолщенная часть сосудистой оболочки, расположена в области перехода роговицы в склеру

передняя часть содержит processus ciliares , составляющие corona ciliaris , в orbiculus ciliaris выделяют мери­диональные, циркулярные и радиальные пучки; таким образом, ресничная мышца играет важную роль в аккомодации глаза за счет изменения кривизны хрусталика, поэтому в функциональном отношении ее также называют аккомодационной

choroidea выстилает внутреннюю поверхность заднего отдела склеры

образована 6-8 короткими задними ресничными артериями и сопровождающими их одноименными ве­нами, которые проникают в глазное яблоко в области заднего полюса и формируют сосудистое сплетение

Оболочки глазного яблока

Составные части оболочек

Отличительные признаки

Tunica interna bulbi (сетчатка , retina )

pars optica retinae , содержит палочки и колбочки

слепое пятно: discus nervi optici , в центре диска - excavatio disci ; место наилучшего видения: macula , в центре которого - fovea centralis

« слепая » часть : pars ciliaris retinae, pars iridica retinae

не содержит фоторецепторных клеток

На гистотопограмме в составе зрительной части сетчатки выделяют 10 слоев. Наиболее глубокий из них пигментный слой, который распространяется и на «слепую» часть сетчатки. За пигментным слоем располагаются фоторецепторные клетки - палочки (100-120 млн) и колбочки (6-7 млн). Палочки и колбочки связаны с биполярными нейронами, которые передают информацию на ганглиозные нейроны. Аксоны последних лежат на поверхности сетчатки и в последующем составляют зрительный нерв. В пределах сетчатки они лишены миелиновой оболочки, поэтому пропускают свет до палочек и колбочек. В связи с указанными особенностями строения в сетчатке выделяют пигментную часть, pars pigmentosa, и внутреннюю светочувствительную часть - нервную, pars nervosa.

Содержимым глазного яблока, составляющим его ядро, являются: водянистая влага, хрусталик и стекловидное тело. Они выполняют светопроводящую и светопреломляющую функции. Водянистая влага, humor aquosus, находится в передней и задней камерах глазного яблока.

Передняя камера глазного яблока, camera anterior bulbi, входящая в строение органа зрения, представляет собой пространство, ограниченное задней поверхностью роговицы, передней поверхностью радужки и центральной частью капсулы хрусталика. Эта камера имеет неравномерную глубину, она истончается по направлению к периферии. В области зрачка ее глубина составляет 3-3,5 мм.

Задняя камера глазного яблока, camera posterior bulbi, ограничена спереди радужкой; латерально снаружи - ресничным телом; сзади - передней поверхностью ресничного тела; медиально-боковой поверхностью хрусталика (экватором хрусталика). Обе камеры глазного яблока вмещают 1,2-1,3 см3 водянистой влаги.

Водянистая влага (внутриглазная жидкость) по своему составу близка к плазме крови. Она образуется путем ультрафильтрации крови через стенку ресничных отростков и сосудов ресничного тела. Образовавшаяся жидкость поступает в заднюю камеру глазного яблока, которая сообщается с пространством между волокнами ресничного пояска, fibrae zonulares. Эти волокна соединяют капсулу хрусталика с ресничным телом. Пространства ресничного пояска, spatia zonularia, имеют форму круговой щели, лежащей по периферии хрусталика, и носят название Петитов канал.

Таким образом, внутриглазная жидкость из задней камеры проникает в Петитов канал. Из последнего в момент аккомодации хрусталика через зрачок она поступает в переднюю камеру глазного яблока. В углу этой камеры в составе гребенчатой связки радужки, ligamentum pectination iridis, находятся пространства радужно-роговичного угла (Фонтановы). Через Фонтановы пространства водянистая влага оттекает в венозный синус склеры, sinus venosussclerae (Шлеммов канал). Небольшая часть внутриглазной жидкости оттекает через ресничное тело в околососудистое пространство, spatiumperichoroidale. Из последнего она поступает в периневральное пространство, окружающее зрительный нерв, и далее в межоболочечное субарахноидальное пространство.

Между притоком и оттоком внутриглазной жидкости существует равновесный баланс, который обеспечивает поддержание определенного уровня внутриглазного давления (25-27 мм рт. ст.). Повышение внутриглазного давления (глаукома) или его снижение приводят к нарушению зрения.

Хрусталик, lens, представляет собой полутвердое бессосудистое тело, имеющее форму двояковыпуклой линзы. В глазном яблоке хрусталик располагается позади радужки на передней поверхности стекловидного тела. В нем различают переднюю и заднюю поверхности. Закругленный периферический край хрусталика, где сходятся его поверхности, носит название экватор, equator lends. Условная линия, соединяющая передний и задний полюса хрусталика, именуется осью хрусталика, axis lends. Ее длина составляет 4 мм. Хрусталик удерживается многочисленными волокнами, составляющими подвешивающую связку - ресничный поясок.

Ресничный поясок простирается от ресничного тела и его отростков к экватору хрусталика, где вплетается в капсулу. Капсула хрусталика, capsula lentis, представлена тонкой прозрачной оболочкой. Под капсулой располагается один слой эпителиальных клеток, составляющий кору хрусталика, cortex lentis. Внутри находится ядро хрусталика, nucleus lentis, более плотное, чем кора. Вещество хрусталика, substantia lentis, пронизывает 12-16 радиальных волокон хрусталика, fibrae lentis, которые представляют собой вытянутые в длину клетки эпителия. Одна из особенностей органа зрения заключается в том, что при сокращении ресничной мышцы расслабляется ресничный поясок (циннова связка) и хрусталик становится более округлым. При этом преломляющая способность его возрастает до 33 диоптрий. При расслаблении ресничной мышцы хрусталик уплощается, его преломляющая способность уменьшается до 18 диоптрий.

Стекловидная камера глазного яблока, camera vitrea bulbi, занимает задний отдел полости глаза, позади хрусталика. Она заполнена стекловидным телом, corpus vitreum, покрытым тонкой мембраной. Передняя часть стекловидного тела имеет вдавление, в котором находится задняя часть хрусталика. Это вдавление носит название стекловидной ямки,/ossa hyaloidea. Стекловидное тело представляет собой прозрачную студенистую массу, объемом 3,5-4 мл. Оно лишено сосудов и нервов. Его преломляющая способность близка к показателю преломления водянистой влаги, заполняющей камеры глаза.

Характеристика органа зрения: вспомогательные части глаза

К вспомогательным составным частям органа зрения относят: глазницу, выстланную изнутри надкостницей, веки и ресницы, слезный аппарат, конъюнктиву, мышцы глазного яблока, жировое тело глазницы и влагалище глазного яблока.

Таблица «Вспомогательные части органа зрения»:

Название

Составляющие
компоненты глаза как органа зрения человека

Особенности строения и функции вспомогательных частей органа зрения человека

Фиксирующий аппарат глазного яблока (мышечно-фасциально­капсулярный комплекс)

мышечно-фасциально­капсулярный комплекс perior bita , влагалище, vagina bulbi (тенонова капсула); corpus adi posu orbitae , septum orbitae

теноново(эпискле­ральное) пространство, spatium episclerale , а также перибульбарное, ретробульбарное,супралеваторное пространства

Мышцы глазно­го яблока, musculi bulbi

вращают вокруг вертикальной оси musculus rectus superior, musculus rectus inferior; вокруг фронтальной оси musculus rectus lateralis, musculus rectus medialis; вниз и латерально - musculus obliquus superior, вверх и латерально - musculus obliquus inferior, кроме того, мышца, поднимающая верхнее веко, musculus levator palpebrae superioris

все, за исключением нижней косой мышцы, идут от anulus tendineus communis, прободая vagina bulbi, к склере

Веки, palpebrae, бровь, supercilium, ресницы, cilia

patpebra superior, palpebra inferior, ligamentum palpebrale laterale et ligamentum palpebrale mediate, glandulae tarsales (Мейбомиевы); supercilium, cilia

выполняют защитную функцию

Конъюнкти­вальная оболочка, tunica conjunctiva

tunica conjunctiva palpebrarum, fornix conjunctivae superior et inferior, tunica conjunctiva bulbi, saccus conjunctivae

выполняет защитную функцию

Слезный аппарат, apparatus lacrimalis

glandula lacrimalis: pars orbitalis et pars palpebralis, ductuli excretorii, lacus lacrimalis, caruncula lacrimalis, plica semilunaris conjunctivae, papillae lacrimales, punctum lacrimale, rivus lacrimalis, canaliculi lacrimales, saccus lacrimalis, ductus nasolacrimalis

продукция слезной жид­кости, равномерное ее распространение по пе­редней поверхности глазного яблока, всасывание и отведение избыточных количеств слезы

Мышцы глазного яблока

Двигательный аппарат глаза состоит из шести произвольных (поперечно-полосатых) мышц глазного яблока: верхней, нижней, медиальной и латеральной прямых мышц (musculi recti superior, inferior, medialis et lateralis), и верхней и нижней косых мышц (musculi obliqui superior et inferior). Все эти мышцы в анатомии органа зрения человека, за исключением нижней косой, начинаются в глубине глазницы в окружности зрительного канала и прилегающей части fissura orbitalis superior от находящегося здесь общего сухожильного кольца, anulus tendineus communis. Это кольцо в форме воронки охватывает зрительный нерв с arteria ophthalmica, а также nervi oculomotorius, nasociliaris et abducens.

Прямые мышцы прикрепляются своими передними концами впереди экватора глазного яблока по четырем сторонам последнего, срастаясь с белочной оболочкой при помощи сухожилий. Верхняя косая мышца проходит через волокнисто-хрящевое колечко (trochlea), прикрепленное к блоковой ямке, fovea trochlearis (или к блоковой ости, spina trochlearis, если она существует) лобной кости, затем она поворачивает под острым углом назад и вбок и прикрепляется к глазному яблоку на верхнелатеральной стороне его позади экватора. Нижняя косая мышца начинается от латеральной окружности ямки слезного мешка и направляется под глазное яблоко вбок и кзади ниже переднего конца нижней прямой мышцы; сухожилие ее прикрепляется к склере сбоку глазного яблока позади экватора.

Физиология органа зрения человека такова, что прямые мышцы вращают глазное яблоко вокруг двух осей: поперечной (musculi recti superior et inferior), причем зрачок направляется кверху или книзу, и вертикальной (musculi recti lateralis et medialis), когда зрачок направляется вбок или в медиальную сторону. Косые мышцы вращают глазное яблоко вокруг сагиттальной оси. Верхняя косая мышца, вращая глазное яблоко, направляет зрачок вниз и вбок, нижняя косая мышца при своем сокращении - вбок и кверху.

Нужно заметить, что все движения обоих глазных яблок содружественны, так как при движении одного глаза в какую-нибудь сторону в ту же сторону движется одновременно и другой глаз. Когда все мышцы находятся в равномерном напряжении, зрачок смотрит прямо вперед и линии зрения обоих глаз параллельны друг другу. Так бывает, когда глядят вдаль. При рассматривании предметов вблизи линии зрения сходятся кпереди (конвергенция глаз).

Клетчатка глазницы и влагалище глазного яблока

Глазница выстлана надкостницей, periorbita, которая срастается у зрительного канала, canalis opticus, и верхней глазничной щели с твердой оболочкой мозга.

Позади глазного яблока залегает жировая клетчатка, corpus adiposum orbitae, занимающая все пространство между органами, лежащими в глазнице. Этот отдел органа зрения, прилегая к глазному яблоку, отделяется от последнего тесно связанным с нею соединительнотканным листком, который окружает яблоко под названием влагалище глазного яблока, vagina bulbi. Сухожилия мышц глазного яблока, направляясь к местам своих прикреплений в склере, проходят через влагалище глазного яблока, которое дает для них влагалища, продолжающиеся в фасции отдельных мышц.

Веки, palpebrae, представляют род раздвижных ширм, защищающих спереди глазное яблоко. Верхнее веко,palpebra superior, больше нижнего; верхней его границей служит бровь, supercilium, - полоска кожи с короткими волосками, лежащая на границе со лбом. При раскрывании глаза нижнее веко опускается лишь незначительно под влиянием собственной тяжести, верхнее же веко поднимается активно благодаря сокращению подходящей к нему мышцы, поднимающей верхнее веко, musculus levator palpebrae superioris. Свободный край обоих век представляет узкую поверхность, ограниченную передней и задней гранями, limbus palpebralis anterior et posterior. Тотчас сзади от передней грани вырастают из края века в несколько рядов короткие жесткие волоски - ресницы, cilia, служащие как бы решеткой для предохранения глаза от попадания в него разных мелких частиц.

Между свободным краем век находится глазная щель, rim а palpebrarum, через которую при раскрытых веках видна передняя поверхность глазного яблока. Глазная щель, в общем, имеет миндалевидную форму, латеральный угол ее острый, медиальный закруглен и образует так называемое слезное озеро, lacus lacrimalis. Внутри последнего видно небольшое розоватого цвета возвышение - слезное мясцо, caruncula lacrimalis, содержащее жировую ткань и сальные железки с нежными волосками.

Основа каждого века состоит из плотной соединительнотканной пластинки, tarsus.

В области медиального угла глазной щели в ней находится утолщение - медиальная связка век; ligamentum palpebrale mediate, идущая горизонтально от обоих хрящей к переднему и заднему слезным гребням, crista lacrimalis anterior et posterior спереди и сзади от слезного мешка. Другое утолщение имеется у латерального угла глазной щели в виде горизонтальной полоски, латеральная вековая связка, ligamentum palpebrale laterale, соответствующей шву, raphe palpebralis lateralis, между хрящами и боковой стенкой глазницы. В толще хрящей век заложены отвесно расположенные железы, glandulae tarsales, состоящие из продольных трубчатых ходов с сидящими на них альвеолами, в которых вырабатывается сало, sebum palpebrale, для смазки краев век. В верхнем хряще железы обыкновенно встречаются в числе 30- 40, а в нижнем - 20-30. Устья желез хряща век открываются точечными отверстиями на свободном крае века вблизи задней грани. Кроме этих желез, имеются еще и обыкновенные сальные железы, сопровождающие ресницы.

Сзади хрящи век покрыты конъюнктивой, переходящей на их краях в кожу.

Соединительнотканная оболочка глаза, конъюнктива, tunica conjunctiva, одевает всю заднюю поверхность век и вблизи края глазницы заворачивается на глазное яблоко, покрывая его переднюю поверхность. Часть ее, покрывающая веки, носит название tunica conjunctiva palpebrarum, а часть, облекающая глазное яблоко, - tunica conjunctiva bulbi. Таким образом, конъюнктива образует мешок, открытый спереди в области глазной щели. Конъюнктива похожа на слизистую оболочку, хотя по своему происхождению представляет продолжение наружного кожного покрова. На веках она плотно сращена с хрящами, а на остальном протяжении рыхло соединяется с подлежащими частями до края роговицы, где ее эпителиальный покров непосредственно переходит в эпителий роговицы, cornea. Места перехода конъюнктивы с век на глазное яблоко носят название верхнего и нижнего сводов, fornix conjunctivae superior et inferior. Верхний свод глубже нижнего. Своды - это запасные складки конъюнктивы, необходимые для движения глаза и век. Такую же роль играет и полулунная складка конъюнктивы, plica semilunaris conjunctivae, находящаяся в области медиального угла глазной щели латерально от слезного мясца, caruncula lacrimalis. Морфологически она представляет рудимент третьего века (мигательной перепонки).

Ниже представлена характеристика такой части органа зрения, как слезный аппарат.

Слезный аппарат

Слезный аппарат состоит из слезной железы, выделяющей слезу в конъюнктивальный мешок, и из начинающихся в последнем слезоотводящих путей.

Слезная железа, glandula lacrimalis, дольчатого строения, альвеолярно-трубчатая по своему типу, лежит в слезной ямке лобной кости fossa lacrimalis. Выводные протоки ее, ductuli excretorii, в числе 5-12 открываются в мешок конъюнктивы в латеральной части верхнего свода. Выделяющаяся из них слезная жидкость оттекает в медиальный угол глазной щели к слезному озеру. При закрытых глазах она течет по так называемому слезному ручью, rivus lacrimalis, образующемуся между задними гранями краев обоих век и глазным яблоком. У слезного озера слезы поступают в точечные отверстия, располоаоженные у медиального конца век. Исходящие из отверстий дватогонких слезных канальца, canaliculi lacrimales, обходя слезное озеро, впадают порознь или вместе в слезный мешок.

Слезный мешок, saccus lacrimalis, - верхний слепой конец носослезного протока, лежащий в особой костной ямке у внутреннего угла глазницы. Начинающиеся от стенки слезного мешка пучки слезной части мышцы окружающей глазное отверстие, pars lacrimalis musculi orbicularis oculi, могут расширять его и тем содействовать всасыванию слез через слезные канальцы. Непосредственное продолжение книзу слезного мешка составляет носослезный проток, ductus nasolacrimalis, проходящий в одноименном костном канале и открывающийся в полость носа под нижней раковиной.

Пути восприятия глазом световых раздражений

Свет вызывает раздражение светочувствительных элементов, заложенных в сетчатке. Перед тем как попасть на нее, он проходит через различные прозрачные среды глазного яблока: сначала через роговицу, затем водянистую влагу передней камеры и далее через зрачок, который наподобие диафрагмы фотоаппарата регулирует количество световых лучей, пропускаемых в глубину. В темноте зрачок расширяется, чтобы пропустить больше лучей, на свету, наоборот, суживается. Эта регуляция осуществляется специальной мускулатурой (musculi sphincter et dilatator pupillae), иннервируемой вегетативной нервной системой.

Далее свет проходит через светопреломляющую среду глаза (хрусталик), благодаря которой глаз устанавливается для видения предметов на близкое или дальнее расстояние, так что независимо от величины последнего изображение предмета всегда падает на сетчатку. Такое приспособление (аккомодация) зрительной функции органа зрения обеспечивается наличием специальной (гладкой) ресничной мышцы, musculus ciliaris, меняющей кривизну хрусталика и иннервируемой парасимпатическими волокнами.

Путь восприятия глазом световых раздражений можно представить следующим образом:

  • Роговица
  • Водянистая влага передней камеры
  • Зрачок
  • Водянистая влага задней камеры
  • Хрусталик
  • Стекловидное тело
  • Сетчатка.

Строение и функции органа зрения: проводящий путь зрительного анализатора

Говоря о строении органа зрения, важно иметь представление о зрительном анализаторе. Фоторецепторы располагаются в сетчатке глазного яблока и представлены двумя видами нейросенсорных эпителиоцитов - палочковидными и колбочковидными, периферические отростки которых имеют форму палочек и колбочек. Палочки приспособлены к деятельности в сумерках или в темноте, а колбочки - при ярком свете, с ними связано цветовое зрение. В сетчатке человека имеется около 7 млн. колбочек. Они концентрируются вблизи заднего полюса глаза в центральной ямке, где находится так называемое желтое пятно. В этом месте сетчатка лишена кровеносных сосудов. Желтое пятно является областью максимальной остроты зрения. Палочек у человека в 10-20 раз больше, чем колбочек (до 130 млн.), и они распределены по всей сетчатке. Фоторецепторные клетки обладают чрезвычайно высокой чувствительностью. Для активации палочки достаточно одного кванта света.

Возбуждение от нейросенсорных эпителиоцитов (I нейрон) передается биполярным нейронам (II нейрон), а они передают импульсы мультиполярным нейронам (III нейрон). Те и другие лежат во внутренних слоях сетчатки. Аксоны мультиполярных нейронов образуют зрительный нерв, который через зрительный канал входит из глазницы в полость черепа и образует с нервом другой стороны зрительный перекрест (chiasma opticum). Волокна от медиальных (назальных) половин сетчаток переходят на противоположную сторону, а волокна от латеральных (темпоральных) половин сетчаток не перекрещиваются. Образующийся после перекреста зрительный тракт содержит, таким образом, волокна от правых или от левых половин обеих сетчаток. Волокна зрительного тракта оканчиваются в трех подкорковых зрительных центрах: в задних ядрах таламуса, в латеральном коленчатом теле и в верхних холмиках, которые являются местом нахождения IV нейрона проводящего пути.

Ядра подушки таламуса играют, по-видимому, две роли. Во-первых, от них идут восходящие пути к коре больших полушарий. Во-вторых, ядра подушки, по всей вероятности, организуют эмоциональные реакции организма в ответ на зрительные раздражения, создают аффективную окраску зрительного восприятия.

В сером веществе верхних холмиков нервные импульсы переключаются на нисходящие покрышечно-бульбарный и покрышечно-спинномозговой пути, которые оканчиваются в двигательных ядрах черепных нервов и передних столбов спинного мозга. В верхних холмиках замыкаются дуги рефлексов на световые раздражения. Из верхних холмиков происходит передача раздражений, приходящих по зрительному тракту, добавочному (парасимпатическому) ядру глазодвигательного нерва (ядру Якубовича) (V нейрон проводящего пути). Отсюда путь идет к ganglion ciliare (VI нейрон) и от него к мышцам musculus ciliaris, musculus sphincterpupillae. За счет этой связи замыкается дуга зрачкового рефлекса, выражающегося в сужении зрачка в ответ на световое раздражение, и дуга аккомодационного рефлекса.

От верхних холмиков нервные связи также следуют через ретикулярную формацию к симпатическим центрам спинного мозга, которые через верхний шейный симпатический ганглий обеспечивают иннервацию другой мышцы - musculus dilatator pupillae.

Ядра латерального коленчатого тела проецируют зрительные раздражения на кору большого мозга. Волокна, которые начинаются от этих ядер, проходят через подчечевицеобразную часть внутренней капсулы и образуют зрительную лучистость в затылочной доле полушария. Зрительная лучистость оканчивается во внутреннем зернистом слое коры на медиальной поверхности затылочной доли выше и ниже шпорной борозды (первичное зрительное поле 17) и в окружающих его участках (вторичные корковые поля 18 и 19). В первичном зрительном поле выше шпорной борозды находится проекция верхних частей сетчаток, ниже борозды проецируются нижние части сетчаток. Часть волокон зрительной лучистости направляется в кору височной и теменной долей. Поэтому зрительные раздражения могут оказывать воздействие на другие корковые центры.

Кора зрительной области имеет хорошо выраженную колонковую организацию. Каждая корковая колонка содержит около 260 нейронов, объединенных вертикальными связями, и представляет собой обрабатывающее устройство с входом и выходом. Корковые колонки связаны с определенными нейронными группами подкорковых ядер. В зрительной коре микроколонки объединяются в макроколонки. Они занимают площадь около 800 х 800 мкм и представляют собой единицы обработки зрительной информации. Полагают, что нейроны глубоких слоев коры обладают свойствами анализаторов движения органа зрения, а нейроны поверхностных слоев функционируют как зрительные анализаторы формы органов зрения. Группы колонок зрительной коры избирательно связаны с группами колонок в других областях коры и соответствующими нейронными модулями латерального коленчатого тела.

При полном поражении хиазмы возникает двусторонняя слепота. Если поражается центральная часть хиазмы, т.е. та часть, в которой происходит перекрест зрительных волокон, выпадут волокна, которые берут начало от внутренних (носовых) половин сетчатки обоих глаз, соответственно этому выпадут наружные (височные) поля зрения. То есть для правого глаза выпадает правая половина, для левого глаза - левая половина поля зрения.

При поражении зрительного тракта, т.е. участка от хиазмы до подкорковых зрительных центров, выпадают только половины полей зрения, противоположные пораженному зрительному тракту. Так, поражение левого зрительного тракта вызовет невосприимчивость к свету наружной половины сетчатки левого глаза и внутренней половины сетчатки правого глаза, что приведет к выпадению правых половин полей зрения. Такое расстройство носит название одноименной правосторонней гемианопсии. При поражении зрительного тракта справа выпадают левые половины полей зрения - одноименная левосторонняя гемианопсия.

Одноименная гемианопсия наступает не только при повреждении зрительного тракта, но и при повреждении зрительной лучистости (лучистость Грациоле) и коркового зрительного центра (sulcus calcarinus).

При поражении коркового зрительного центра в затылочной доле, в области шпорной борозды (sulcus calcarinus), возникают симптомы как выпадения (гемианопсия или квадрантные выпадения поля зрения), так и раздражения (фотопсии - ощущения светящихся точек, блеска молний, светящихся колец, огненных поверхностей, появление изломанных линий и т.п.) в противоположных полях зрения.

Строение глаза человека включает в себя множество сложных систем которые составляют зрительную систему с помощью которой обеспечивается получение информации о том, что окружает человека. Входящие в ее состав органы чувств, характеризуемые как парные, отличается сложностью строения и уникальностью. Каждый из нас обладает индивидуальными глазами. Их характеристики исключительные. В то же время схема строения глаза человека и функционал, имеет общие черты.

Эволюционное развитие привело к тому, что органы зрения стали максимально сложными образованиями на уровне структур тканевого происхождения. Основное предназначение глаза заключается в обеспечении зрения. Эту возможность гарантируют кровеносные сосуды, соединительные ткани, нервы и пигментные клетки. Ниже приведем описание анатомии и основных функций глаза с обозначениями.



Под схемой строения глаз человека следует понимать весь глазной аппарат имеющий оптическую систему, отвечающую за обработку информации в виде зрительных образов. Здесь подразумевается ее восприятие, последующая обработка и передача. Все это реализуется за счет элементов, формирующих глазное яблоко.

Глаза имеют округлую форму. Местом его расположения служит специальная выемка в черепе. Она именуется как глазная. Наружная часть закрывается веками и складками кожи, служащими для размещения мышц и ресниц.


Их функциональность заключается в следующем:
  • увлажнение, что обеспечивают находящиеся в ресницах железы. Секреторные клетки этого вида способствуют образованию соответствующей жидкости и слизи;
  • защита от повреждений механического характера. Это достигается посредством смыкания век;
  • удаление мельчайших частиц, попадающих на склеру.

Функционирование системы зрения настроено таким образом, чтобы с максимальной точностью осуществлять передачу получаемых световых волн. В этом случае требуется бережное отношение. Рассматриваемые органы чувств отличаются хрупкостью.

Веки

Кожные складки – это то, что представляют собой веки, которые постоянно находятся в движении. Происходит мигание. Такая возможность доступна благодаря наличию связок, расположенных по краям век. Также эти образования выступают в роли соединительных элементов. С их помощью веки крепятся к глазнице. Кожа образует верхний слой век. Затем следует слой мышц. Далее идет хрящевая ткань и конъюнктива.

Веки в части наружного края имеют два ребра, где одно – переднее, а другое – заднее. Они образуют интермаргинальное пространство. Сюда выводятся протоки, идущие от мейбомиевых желез. С их помощью вырабатывается секрет, дающий возможность скользить векам с предельной легкостью. При этом достигается плотность смыкания век, и создаются условия для правильного отвода слезной жидкости.

На переднем ребре находятся луковицы, обеспечивающие рост ресничек. Сюда же выходят протоки, служащие транспортными путями для маслянистого секрета. Здесь же располагаются выводы потовых желез. Углы век соотносятся с выводами слезных протоков. Заднее ребро служит гарантией того, что каждое веко будет плотно прилегать к глазному яблоку.

Для век характерны сложные системы, обеспечивающие эти органы кровью и поддерживающие правильность проводимости нервных импульсов. За кровоснабжение отвечает сонная артерия. Регуляция на уровне нервной системы – задействование двигательных волокон, формирующих лицевой нерв, а также обеспечивающих соответствующую чувствительность.

К главным функциям века относят защиту от повреждений в результате механического воздействия и инородных тел. К этому следует добавить функцию увлажнения, способствующую насыщению влагой внутренних тканей органов зрения.

Глазница и ее содержимое

Под костной впадиной понимается глазница, которая еще именуется как костная орбита. Она служит надежной защитой. Структура этого образования включает в себя четыре части – верхнюю, нижнюю, наружную и внутреннюю. Они образуют единое целое за счет устойчивого соединения между собой. При этом их прочность различная.

Особой надежностью отличается наружная стенка. Внутренняя значительно слабее. Тупые травмы способны спровоцировать ее разрушение.


К особенностям стенок костной впадины относят их соседство с воздушными пазухами:
  • внутри – решетчатый лабиринт;
  • низ – гайморова пазуха;
  • верх – лобная пустота.


Подобное структурирование создает определенную опасность. Опухолевые процессы, развивающиеся в пазухах, способны распространиться и на полость глазницы. Допустимо и обратное действие. Глазница сообщается с полостью черепа посредством большого числа отверстий, что предполагает возможность перехода воспаления на участки головного мозга.

Зрачок

Зрачок глаза представляет собой отверстие круглой формы, расположенное в центре радужки. Его диаметр способен изменяться, что позволяет регулировать степень проникновения светового потока во внутреннюю область глаза. Мышцы зрачка в виде сфинктера и дилататора обеспечивают условия, когда изменяется освещенность сетчатки. Задействование сфинктера сужает зрачок, а дилататора – расширяет.

Такое функционирование упомянутых мышц сродни тому, как действует диафрагма фотоаппарата. Слепящий свет приводит к уменьшению ее диаметра, что отсекает слишком интенсивные световые лучи. Создаются условия, когда достигается качество изображения. Недостаток освещенности приводит к другому результату. Диафрагма расширяется. Качество снимка опять же остается высоким. Здесь можно говорить о диафрагмирующей функции. С ее помощью обеспечивается зрачковый рефлекс.


Величина зрачков регулируется в автоматическом режиме, если такое выражение допустимо. Сознание человека явным образом этот процесс не контролирует. Проявление зрачкового рефлекса связано с изменением освещенности сетчатой оболочки. Поглощение фотонов запускает процесс передачи соответствующей информации, где под адресатами понимаются нервные центры. Требуемая реакция сфинктера достигается после обработки сигнала нервной системой. В действие вступает ее парасимпатический отдел. Что касается дилататора, то здесь в дело вступает симпатический отдел.

Рефлексы зрачка

Реакция в виде рефлекса обеспечивается за счет чувствительности и возбуждения двигательной активности. Сначала формируется сигнал как ответ на определенное воздействие, в дело вступает нервная система. Затем следует конкретная реакция на раздражитель. В работу включаются мышечные ткани.

Освещение заставляет зрачок сужаться. Это отсекает слепящий свет, что положительно сказывается на качестве зрения.


Такая реакция может характеризоваться следующим образом:
  • прямая – освещается один глаз. Он реагирует требуемым образом;
  • содружественная – второй орган зрения не освещается, но отзывается на световое воздействие, оказываемое на первый глаз. Эффект этого вида достигается посредством того, что волокна нервной системы частично перекрещиваются. Образуется хиазма.

Раздражитель в виде света не является единственной причиной изменения диаметра зрачков. Еще возможны такие моменты, как конвергенция – стимуляция активности прямых мышц зрительного органа, и аккомодация – задействование цилиарной мышцы.

Возникновение рассматриваемых зрачковых рефлексов происходит тогда, когда изменяется точка стабилизации зрения: взгляд переводится с объекта, расположенного на большом удалении, на объект, находящийся на более близком расстоянии. Задействуются проприорецепторы упомянутых мышц, что обеспечивают волокна, идущие к глазному яблоку.

Эмоциональный стресс, например, в результате боли или испуга, стимулирует расширение зрачка. Если раздражается тройничный нерв, а это говорит о низкой возбудимости, то наблюдается эффект сужения. Также подобные реакции возникают при приеме определенных лекарственных препаратов, возбуждающих рецепторы соответствующих мышц.

Зрительный нерв

Функциональность зрительного нерва заключается в доставке соответствующих сообщений в определенные области головного мозга, предназначенные для обработки световой информации.

Импульсы света сначала попадают на сетчатку. Местонахождение зрительного центра определяется затылочной долей головного мозга. Структура зрительного нерва предполагает наличие нескольких составляющих.

На этапе внутриутробного развития структуры головного мозга, внутренней оболочки глаза и зрительного нерва идентичны. Это дает основание утверждать, что последний – часть мозга, находящаяся вне пределов черепной коробки. При этом обычные черепно-мозговые нервы имеют отличную от него структуру.

Длина зрительного нерва небольшая. Составляет 4–6 см. Преимущественно местом его расположения служит пространство за глазным яблоком, где он погружен в жировую клетку орбиты, что гарантирует защиту от повреждений извне. Глазное яблоко в части заднего полюса – участок, где начинается нерв этого вида. В этом месте наблюдается скопление нервных отростков. Они формируют своеобразный диск (ДЗН). Такое название объясняется приплюснутостью формы. Двигаясь дальше, нерв выходит в глазницу с последующим погружением в мозговые оболочки. Затем он достигает передней черепной ямки.


Зрительные пути образуют хиазму внутри черепа. Они пересекаются. Эта особенность важна при диагностировании глазных и неврологических заболеваний.

Непосредственно под хиазмом находится гипофиз. От его состояния зависит, насколько эффективно способна работать эндокринная система. Такая анатомия отчетливо просматривается, если опухолевые процессы затрагивают гипофиз. Правлением патологии этого вида становится оптико-хиазмальный синдром.

Внутренние ветви сонной артерии отвечают за то, чтобы обеспечивать зрительный нерв кровью. Недостаточная длина цилиарных артерий исключает возможность хорошего кровоснабжения ДЗН. В то же время другие части получают кровь в полном объеме.

Обработка световой информации напрямую зависит от зрительного нерва. Главная его функция – доставить сообщения относительно полученной картинки до конкретных адресатов в виде соответствующих зон головного мозга. Любые травмы этого образования вне зависимости от тяжести способны привести к негативным последствиям.

Камеры глазного яблока

Пространства замкнутого типа в глазном яблоке – это так называемые камеры. В них содержится внутриглазная влага. Между ними существует связь. Таких образований два. Одно занимает переднее положение, а другое – заднее. В качестве связующего звена выступает зрачок.

Переднее пространство расположено сразу за областью роговицы. Его тыльная сторона ограничена радужной оболочкой. Что касается пространства за радужкой, то это задняя камера. Стекловидное тело служит ей опорой. Неизменяемый объем камер – это норма. Производство влаги и ее отток – процессы, способствующие корректировке соответствия стандартным объемам. Выработка глазной жидкости возможна за счет функциональности ресничных отростков. Ее отток обеспечивается благодаря системе дренажей. Она находится во фронтальной части, где роговица контактирует со склерой.

Функциональность камер заключается в поддержании «сотрудничества» между внутриглазными тканями. Также они отвечают за поступление световых потоков на сетчатую оболочку. Лучи света на входе преломляются соответствующим образом в результате совместной деятельности с роговицей. Это достигается посредством свойств оптики, присущих не только влаге внутри глаза, но и роговой оболочке. Создается эффект линзы.

Роговица в части ее эндотелиального слоя выступает в роли внешнего ограничителя для передней камеры. Рубеж обратной стороны формируется радужкой и хрусталиком. Максимальная глубина приходится на ту область, где располагается зрачок. Ее величина доходит до 3,5 мм. При движении к периферии этот параметр медленно уменьшается. Иногда такая глубина оказывается большей, например, при отсутствии хрусталика ввиду его удаления, или меньшей, если отслаивается сосудистая оболочка.


Заднее пространство ограничивается спереди листком радужки, а его тыльная часть упирается в стекловидное тело. В роли внутреннего ограничителя выступает экватор хрусталика. Внешний барьер образует цилиарное тело. Внутри находится большое число цинновых связок, представляющих собой тонкие нити. Они создают образование, выступающее в роли связующего звена между ресничным телом и биологической линзой в виде хрусталика. Форма последнего способна изменяться под воздействием цилиарной мышцы и соответствующих связок. Это обеспечивает требуемую видимость объектов вне зависимости от расстояния до них.

Состав влаги, находящейся внутри глаза, соотносится с характеристиками плазмы крови. Внутриглазная жидкость делает возможным доставку питательных веществ, востребованных с целью обеспечения нормальной работы органов зрения. Также с ее помощью реализуется возможность удаления продуктов обмена.

Вместительность камер определяется объемами в диапазоне от 1,2 до 1,32 см3. При этом важно то, как производится выработка и отток глазной жидкости. Эти процессы требуют равновесия. Любые нарушения работы такой системы приводят к негативным последствиям. Например, существует вероятность развития глаукомы, что грозит серьезными проблемами с качеством зрения.

Цилиарные отростки служат источниками глазной влаги, что достигается за счет фильтрации крови. Непосредственное место, где образуется жидкость, – задняя камера. После этого она перемещается в переднюю с последующим оттоком. Возможность этого процесса обусловливается разницей давления, создающегося в венах. На последнем этапе происходит всасывание влаги этими сосудами.

Шлеммов канал

Щель внутри склеры, характеризуемая как циркулярная. Названа по фамилии немецкого врача Фридриха Шлемма. Передняя камера в части своего угла, где образуется стык радужки и роговицы, – это более точная область расположения шлеммова канала. Его предназначение заключается в отводе водянистой влаги с обеспечением последующего ее всасывания передней цилиарной веной.


Строение канала в большей мере соотносится с тем, как выглядит лимфатический сосуд. Внутренняя его часть, вступающая в соприкосновение с вырабатываемой влагой, представляет собой сетчатое образование.

Возможности канала в плане транспортировки жидкости составляют от 2 до 3 микро литров в минуту. Травмы и инфекции блокируют работу канала, что провоцирует появления заболевания в виде глаукомы.

Кровоснабжение глаза

Создание потока крови, поступающего к органам зрения, – это функциональность глазной артерии которая является неотъемлемой частью строения глаза. Образуется соответствующая ветвь от сонной артерии. Она достигает глазного отверстия и проникает внутрь глазницы, что делает вместе со зрительным нервом. Затем ее направление меняется. Нерв огибается с внешней стороны таким образом, что ветвь оказывается сверху. Формируется дуга с исходящими от нее мышечными, ресничными и другими ветвями. С помощью центральной артерии обеспечивается кровоснабжение сетчатой оболочки. Сосуды, участвующие в этом процессе, образуют свою систему. В ее состав входят также и ресничные артерии.

После того, как система оказывается в глазном яблоке, происходит ее разделение на ветви, что гарантирует полноценное питание сетчатки. Такие образования определяются как концевые: они не имеют соединений с рядом находящимися сосудами.

Цилиарные артерии характеризируют по признаку расположения. Задние достигают тыльной области глазного яблока, минуют склеру и расходятся. К особенностям передних относят то, что они различаются по длине.

Цилиарные артерии, определяемые как короткие, проходят склеру и формируют отдельное сосудистое образование, состоящее из множества ветвей. На входе в склеру образуется сосудистый венчик из артерий этого вида. Он возникает там, где зрительный нерв берет свое начало.

Цилиарные артерии меньшей длины также оказываются в глазном яблоке и устремляются к ресничному телу. Во фронтальной области каждый такой сосуд распадается на два ствола. Создается образование, обладающее концентрической структурой. После чего они встречаются с подобными ответвлениями другой артерии. Формируется круг, определяемый как большой артериальный. Также возникает аналогичное образование меньших размеров на месте, где находится пояс радужки ресничный и зрачковый.


Цилиарные артерии, характеризуемые как передние, – это часть мышечных кровеносных сосудов подобного типа. Они не заканчиваются в области, образуемой прямыми мышцами, а тянутся дальше. Происходит погружение в эписклеральную ткань. Сначала артерии проходят по периферии глазного яблока, а затем углубляются в него посредством семи ответвлений. В итоге происходит их соединение друг с другом. По периметру радужки формируется круг кровообращения, обозначаемый как большой.

На подходе к глазному яблоку образуется петлистая сеть, состоящая из цилиарных артерий. Она опутывает роговицу. Также происходит деление не ветви, обеспечивающие кровоснабжение конъюнктивы.

Частично оттоку крови способствуют вены, идущие вместе с артериями. Преимущественно это возможно за счет венозный путей, собирающихся в отдельные системы.

Своеобразными коллекторами служат водоворотные вены. Их функциональность – сбор крови. Прохождение этими венами склеры происходит под косым углом. С их помощью обеспечивается отвод крови. Она поступает в глазницу. Основной сборщик крови – глазная вена, занимающая верхнее положение. Посредством соответствующей щели она выводится в пещеристый синус.

Глазная вена внизу принимает кровь от проходящих в этом месте водоворотных вен. Происходит ее раздвоение. Одна ветвь соединяется с глазной веной, находящейся вверху, а другая – достигает глубокой вены лица и щелевидного пространства с крыловидным отростком.

В основном кровоток от ресничных вен (передних) наполняет подобные сосуды глазницы. В результате основной объем крови поступает в венозные пазухи. Создается обратное движение потока. Оставшаяся кровь движется вперед и наполняет вены лица.

Орбитальные вены соединяются с венами полости носа, лицевыми сосудами и решетчатой пазухой. Самый крупный анастомоз образуют вены глазницы и лица. Его граница затрагивает внутренний угол век и соединяет непосредственно глазную вену и лицевую.

Мышцы глаза

Возможность хорошего и объемного зрения достигается тогда, когда глазные яблоки способны двигаться определенным образом. Здесь особую важность приобретает согласованность работы зрительных органов. Гарантами такого функционирования выступают шесть мышц глаза, где четыре из них прямые, а две – косые. Последние так называются ввиду особенности хода.

За активность этих мышц несут ответственность черепные нервы. Волокна рассматриваемой группы мышечной ткани максимально насыщены нервными окончаниями, что обусловливает их работу с позиции высокой точности.

Посредством мышц, отвечающих за физическую активность глазных яблок, доступны разноплановые движения. Потребность в реализации этой функциональности определяется тем, что требуется слаженная работа мышечных волокон этого типа. Одни и те же картинки предметов должны фиксироваться на одинаковых областях сетчатки. Это позволяет ощущать глубину пространства и отлично видеть.



Строение мышц глаза

Мышцы глаза начинаются возле кольца, которое служит окружением зрительного канала вблизи к наружному отверстию. Исключение касается лишь косой мышечной ткани, занимающей нижнее положение.

Мышцы расположены так, что формируют воронку. Через нее проходят нервные волокна и кровеносные сосуды. По мере удаления от начала этого образования происходит отклонение косой мышцы, находящейся вверху. Наблюдается смещение в сторону своеобразного блока. Здесь она преобразуется в сухожилие. Прохождение сквозь петлю блока задает направление под углом. Мышца крепится в верхнем радужном отделе глазного яблока. Там же начинается косая мышца (нижняя), от края глазницы.

По мере приближения мышц к глазному яблоку, образуется плотная капсула (теноновая оболочка). Устанавливается соединение со склерой, что происходит с разной степенью удаленности от лимба. На минимальном удалении располагается внутренняя прямая мышца, на максимальном - верхняя. Фиксация косых мышц производится в ближе к центру глазного яблока.

Функциональность глазодвигательного нерва заключается в поддержании правильной работы мышц глаза. Ответственность отводящего нерва определяется поддержанием активности прямой мышцы (наружной), а блокового – верхней косой. Для регуляции этого вида характерна своя особенность. Контроль незначительного числа мышечных волокон осуществляется за счет одной ветви двигательного нерва, что значительно повышает четкость движений глаз.

Нюансы крепления мышц задают вариативность того, как именно способны двигаться глазные яблоки. Прямые мышцы (внутренние, наружные) крепятся таким образом, что они обеспечиваются горизонтальные повороты. Активность внутренней прямой мышцы позволяет поворачивать глазное яблоко по направлению к носу, а наружной – к виску.

За вертикальные движения отвечают прямые мышцы. Существует нюанс их расположения, обусловленный тем, что присутствует определенный наклон линии фиксации, если ориентироваться на линию лимба. Это обстоятельство создает условия, когда вместе с вертикальным движением глазное яблоко поворачивается внутрь.

Функционирование косых мышц отличается большей сложностью. Объясняется это особенностями расположения этой мышечной ткани. Опускание глаза и поворот наружу обеспечивает косая мышца, расположенная вверху, а подъем, включая поворот наружу, – также косая мышца, но уже нижняя.

Еще к возможностям упомянутых мышц относят обеспечение незначительных поворотов глазного яблока в соответствии с движением часовой стрелки вне зависимости от направления. Регуляция на уровне поддержания нужной активности нервных волокон и слаженность работы глазных мышц – два момента, способствующие реализации сложных поворотов глазных яблок любой направленности. В результате зрение приобретает такое свойство, как объем, а его четкость существенно повышается.

Оболочки глаза

Форма глаза удерживается благодаря соответствующим оболочкам. Хотя на этом функциональность этих образований не исчерпывается. С их помощью осуществляется доставка питательных веществ, и поддерживается процесс аккомодации (четкое видение предметов при изменении величины расстояния до них).


Органы зрения отличаются многослойной структурой, проявляемой в виде следующих оболочек:
  • фиброзная;
  • сосудистая;
  • сетчатка.

Фиброзная оболочка глаза

Соединительная ткань, позволяющая удерживать конкретную форму глаза. Также выступает в роли защитного барьера. Структура фиброзной оболочки предполагает наличие двух составляющих, где одна – это роговица, а вторая – склера.

Роговица

Оболочка, отличающаяся прозрачностью и эластичностью. По форме соотносится с выпукло-вогнутой линзой. Функциональность практически идентична тому, что делает линза фотоаппарата: фокусирует лучи света. Вогнутая сторона роговицы смотрит назад.


Состав этой оболочки формируется посредством пяти слоев:
  • эпителий;
  • боуменова мембрана;
  • строма;
  • десцеметова оболочка;
  • эндотелий.

Склера

В строении глаза важную роль играет внешняя защита глазного яблока. Формирует фиброзную оболочку, включающую также и роговицу. В отличие от последней склера представляет собой непрозрачную ткань. Связано это с хаотичным расположением коллагеновых волокон.

Основная функция – качественное зрение, что гарантируется ввиду препятствования проникновению световых лучей сквозь склеру.

Исключается вероятность ослепления. Также это образование служит опорой для составляющих глаза, вынесенных за пределы глазного яблока. Сюда относят нервы, сосуды, связки и глазодвигательные мышцы. Плотность структуры обеспечивает поддержание в заданных значениях внутриглазного давления. Шлемов канал выступает в роли транспортного канала, обеспечивающего отток глазной влаги.


Сосудистая оболочка

Формируется на основе трех частей:
  • радужка;
  • цилиарное тело;
  • хориоидея.

Радужка

Часть сосудистой оболочки, отличающаяся от других отделов этого образования тем, что ее расположение фронтальное против пристеночного, если ориентироваться на плоскость лимба. Представляет собой диск. В центре находится отверстие, известное как зрачок.


Структурно состоит из трех слоев:
  • пограничный, расположенный спереди;
  • стромальный;
  • пигментно-мышечный.

В формировании первого слоя участвуют фибробласты, соединяющиеся между собой посредством своих отростков. За ними располагаются пигментсодержащие меланоциты. От количества этих специфичных клеток кожи зависит цвет радужки. Этот признак передается по наследству. Коричневая радужка в плане наследования является доминантной, а голубая – рецессивной.

У основной массы новорожденных радужка имеет светло-голубой оттенок, что обусловливается слабо развитой пигментацией. Ближе к полугодовалому возрасту цвет становится более темным. Это связано с ростом числа меланоцитов. Отсутствие меланосом у альбиносов приводит к доминированию розового цвета. В некоторых случаях возможна гетерохромия, когда глаза в части радужки получают разную окраску. Меланоциты способны провоцировать развитие меланом.

Дальнейшее погружение в строму открывает сеть, состоящую из большого числа капилляров и волокон коллагена. Распространение последних захватывает мышцы радужки. Происходит соединение с ресничным телом.

Задний слой радужки состоит из двух мышц. Сфинктер зрачка, по форме напоминающий кольцо, и дилататор, имеющий радиальную ориентацию. Функционирование первого обеспечивает глазодвигательный нерв, а второго – симпатический. Также здесь присутствует пигментный эпителий как часть недифференцированной области сетчатки.

Толщина радужки отличается вариативностью в зависимости от определенного участка этого образования. Диапазон таких изменений составляет 0,2–0,4 мм. Минимум толщины наблюдается в корневой зоне.

Центр радужки занимает зрачок. Его ширина изменчива под воздействием света, что обеспечивают соответствующие мышцы. Большая освещенность провоцирует сжатие, а меньшая – расширение.

Радужка в части своей передней поверхности делится на зрачковый и ресничный пояса. Ширина первого составляет 1 мм и второго – от 3 до 4 мм. Разграничение в этом случае обеспечивает своеобразный валик, обладающий зубчатой формой. Мышцы зрачка распределены следующим образом: сфинктер – зрачковый пояс, а дилататор – ресничный.

Ресничные артерии, формирующие большой артериальный круг, доставляют кровь к радужке. Еще в этом процессе участвует и малый артериальный круг. Иннервация этой определенных зон сосудистой оболочки достигается за счет ресничных нервов.

Ресничное тело

Область сосудистой оболочки, отвечающая за выработку глазной жидкости. Используется также такое название, как цилиарное тело.
Структура рассматриваемого образования – мышечные ткани и кровеносные сосуды. Мышечное содержание этой оболочки предполагает наличие нескольких слоев, имеющих разную направленность. Их активность включает в работу хрусталик. Его форма меняется. В результате человек получает возможность четкого видения объектов на разных расстояниях. Еще одна функциональность ресничного тела заключается в удержании тепла.

Кровеносные капилляры, находящиеся в ресничных отростках, способствуют производству внутриглазной влаги. Происходит фильтрация кровотока. Влага этого вида обеспечивает нужное функционирование глаза. Удерживается постоянная величина внутриглазного давления.

Также цилиарное тело служит опорой для радужки.

Хориоидея (Choroidea)

Область сосудистого тракта, расположенная сзади. Пределы этой оболочки ограничиваются зрительным нервом и зубчатой линией.
Параметр толщина заднего полюса составляет от 0,22 до 0,3 мм. При приближении к зубчатой линии происходит его уменьшение до 0,1–0,15 мм. Хориоидея в части сосудов состоит из цилиарных артерий, где задние короткие идут по направлению к экватору, а передние – к сосудистой оболочке, когда достигается соединение вторых с первыми в ее передней области.

Цилиарные артерии минуют склеру и достигают супрахориоидального пространства, ограниченного хориоидеей и склерой. Происходит распад на значительное число ветвей. Они становятся основой сосудистой оболочки. По периметру диска зрительного нерва образуется сосудистый круг Цинна – Галера. Иногда в области макулы может наличествовать дополнительная ветвь. Она видима или на сетчатке, или на ДЗН. Важный момент при эмболии центральной артерии сетчатки.



Сосудистая оболочка включает в себя четыре составляющих:
  • надсосудистая с темным пигментом;
  • сосудистая коричневатого оттенка;
  • сосудисто-капиллярная, поддерживающая работу сетчатки;
  • базальный слой.

Сетчатка глаза (ретина)

Сетчаткой является периферический отдел, запускающий в работу зрительный анализатор который играет важную роль в строении глаза человека. С его помощью улавливаются световые волны, производится их преобразование в импульсы на уровне возбуждения нервной системы и осуществляется дальнейшая передача информации посредством зрительного нерва.

Ретина – это нервная ткань, формирующая глазное яблоко в части его внутренней оболочки. Она ограничивает пространство, заполненное стекловидным телом. В качестве внешнего обрамления выступает сосудистая оболочка. Толщина сетчатки незначительная. Параметр, соответствующий норме, составляет лишь 281 мкм.

Поверхность глазного яблока изнутри в большей своей части покрыта ретиной. Началом сетчатой оболочки условно можно считать ДЗН. Далее она тянется до такой границы, как зубчатая линия. Затем преобразуется в пигментный эпителий, обволакивает внутреннюю оболочку ресничного тела и распространяется на радужку. ДЗН и зубчатая линия – это области, где крепление сетчатки наиболее надежное. В других местах ее соединение отличается небольшой плотностью. Именно этот факт объясняет то, что ткань легко отслаивается. Это провоцирует множество серьезных проблем.

Структура сетчатой оболочки формируется нескольким слоями, отличающимися разной функциональностью и строением. Они тесно соединены друг с другом. Образуется плотный контакт, обусловливающий создание того, что принято называть зрительным анализатором. Посредством его человеку предоставляется возможность правильного восприятия окружающего мира, когда производится адекватная оценка цвета, форм и размеров предметов, а также расстояния до них.


Лучи света при попадании в глаз проходят несколько преломляющих сред. Под ними следует понимать роговицу, глазную жидкость, прозрачное тело хрусталика и стекловидное тело. Если рефракция в пределах нормы, то в результате такого прохождения световых лучей на сетчатке формируется картинка объектов, попавших в поле зрения. Полученное изображение отличается тем, что оно перевернутое. Далее определенные части головного мозга получают соответствующие импульсы, и человек приобретает способность видеть то, что его окружает.

С точки зрения структуры ретина – максимально сложное образование. Все ее составляющие тесно взаимодействуют друг с другом. Она отличается многослойностью. Повреждение любого слоя способно привести к негативному исходу. Зрительное восприятие как функциональность сетчатки обеспечивается трех-нейронной сетью, проводящей возбуждения от рецепторов. Ее состав формируется за счет широкого набора нейронов.

Слои сетчатки

Ретина образует «сэндвич» из десяти рядов:


1. Пигментный эпителий , прилегающий к мембране Бруха. Отличается широкой функциональностью. Защита, клеточное питание, транспортировка. Принимает в себя отторгающие сегменты фоторецепторов. Служит барьером на пути светового излучения.


2. Фотосенсорный слой . Клетки, обладающие чувствительностью к свету, в виде своеобразных палочек и колбочек. В палочкоподобных цилиндрах содержится зрительный сегмент родопсин, а в колбочках – иодопсин. Первый обеспечивает цветоощущение и периферическое зрение, а второй – видение при слабой освещенности.


3. Пограничная мембрана (наружная). Структурно состоит из терминальных образований и наружных участков рецепторов ретины. Структура мюллеровских клеток за счет своих отростков делает возможным сбор света на сетчатке и его доставку к соответствующим рецепторам.


4. Ядерный слой (наружный). Получил свое название из-за того, что сформирован на основе ядер и тел светочувствительных клеток.


5. Плексиформный слой (наружный). Определяется контактами на уровне клеток. Возникают между нейронами, характеризуемыми как биполярные и ассоциативные. Сюда же относят и светочувствительные образования этого вида.


6. Ядерный слой (внутренний). Сформирован из разных клеток, например, биполярных и мюллеровских. Востребованность последних связана с необходимостью поддержания функций нервной ткани. Другие ориентированы на обработку сигналов от фоторецепторов.


7. Плексиформный слой (внутренний). Переплетение нервных клеток в части их отростков. Служит разделителем между внутренней частью сетчатки, характеризуемой как сосудистая, и наружной – бессосудистая.


8. Ганглиозные клетки . Обеспечивают свободное проникновение света ввиду отсутствия такого покрытия, как миелин. Являются мостом между светочувствительными клетками и зрительным нервом.


9. Ганглионарная клетка . Участвует в формировании зрительного нерва.


10. Пограничная мембрана (внутренняя). Покрытие ретины изнутри. Состоит из клеток Мюллера.

Оптическая система глаза

Качество зрения зависит от основных частей человеческого глаза. Состояние пропускающих в виде роговицы, сетчатки и хрусталика напрямую влияет на то, как будет видеть человек: плохо или хорошо.

Большее участие в преломлении лучей света принимает роговица. В этом контексте можно провести аналогию с принципом действия фотоаппарата. Диафрагма – это зрачок. С его помощью регулируется поток световых лучей, а фокусное расстояние задает качество изображения.

Благодаря хрусталику световые лучи попадают на «фотопленку». В нашем случае под ней следует понимать сетчатую оболочку.


Стекловидное тело и влага, находящаяся в глазных камерах, также преломляют световые лучи, но в значительно меньшей степени. Хотя состояние этих образований ощутимо сказывается на качестве зрения. Оно способно ухудшаться при снижении степени прозрачности влаги или появлении в ней крови.

Правильное восприятие окружающего мира через органы зрения предполагает, что проход световых лучей через все оптические среды приводит к формированию на сетчатке уменьшенного и перевернутого изображения, но реального. Заключительная обработка информации от зрительных рецепторов происходит в отделах головного мозга. За это отвечают затылочные доли.

Слезный аппарат

Физиологическая система, обеспечивающая выработку специальной влаги с последующим ее выводом в полость носа. Органы слезной системы классифицируются в зависимости от секреторного отдела и аппарата слезоотведения. Особенность системы заключается в парности ее органов.

Работа концевого отдела состоит в том, чтобы вырабатывать слезу. Его структура включает в себя слезную железу и добавочные образования подобного вида. Под первой понимается серозная железа, обладающая сложным строением. Подразделяется на две части (низ, верх), где в качестве разделительного барьера выступает сухожилие мышцы, отвечающей за подъем верхнего века. Область вверху в плане размера следующая: 12 на 25 мм при 5-миллиметровой толщине. Ее расположение определяется стенкой глазницы, имеющей направленность вверх и наружу. Эта часть включает в себя выводные канальцы. Их число варьируется от 3 до 5. Вывод осуществляется в конъюнктиву.

Что касается нижней части, то она обладает менее значительными размерами (11 на 8 мм) и меньшей толщиной (2 мм). У нее есть канальцы, где одни соединяются с такими же образованиями верхней части, а другие выводятся в конъюнктивальный мешок.


Обеспечение слезной железы кровью производится посредством слезной артерии, а отток организован в слезную вену. Тройничный лицевой нерв выступает в роли инициатора соответствующего возбуждения нервной системы. Также к этому процессу подключаются симпатические и парасимпатические нервные волокна.

В стандартной ситуации работают исключительно добавочные железы. Посредством их функциональности обеспечивается выработка слезы в объеме около 1 мм. Это обеспечивает требуемое увлажнение. Что касается основной слезной железы, то она вступает в действие при появлении разного рода раздражителей. Это могут быть инородные тела, слишком яркий свет, эмоциональный всплеск и т. д.

Структура слезоотводящего отдела основывается на образованиях, способствующих движению влаги. Также они отвечают за ее отвод. Такое функционирование обеспечивается благодаря слезному ручью, озеру, точкам, канальцам, мешку и носослезному протоку.

Упомянутые точки отлично визуализируются. Их расположение определяется внутренними углами век. Они ориентированы на слезное озеро и находятся в плотном соприкосновении с конъюнктивой. Установление связи между мешком и точками достигается посредством специальных канальцев, достигающих в длину 8–10 мм.

Расположение слезного мешка определяется костной ямкой, находящейся рядом с углом глазницы. С точки зрения анатомии это образование представляет собой закрытую полость цилиндрического вида. Она вытянута на 10 мм, а ее ширина составляет 4 мм. На поверхности мешка присутствует эпителий, имеющий в своем составе бокаловидный гландулоцит. Приток крови обеспечивается с помощью глазной артерии, а отток – мелких вен. Часть мешка внизу сообщается с носослезным каналом, выходящим в носовую полость.

Стекловидное тело

Вещество, похожее на гель. Заполняет глазное яблоко на 2/3. Отличается прозрачностью. Состоит на 99% из воды, имеющей в своем составе гиалоурановую кислоту.

В передней части находится выемка. Она прилегает к хрусталику. В остальном это образование контактирует с сетчатой оболочкой в части ее мембраны. ДЗН и хрусталик соотносятся посредством гиалоидного канала. Структурно стекловидное тело состоит из белка коллагена в виде волокон. Существующие промежутки между ними заполнены жидкостью. Это объясняет то, что рассматриваемое образование представляет собой студенистую массу.


По периферии располагаются гиалоциты – клетки, способствующие образованию гиалуроновой кислоты, белков и коллагенов. Также они участвуют в формировании белковых структур, известных как гемидесмосомы. С их помощью устанавливается плотная связь между мембраной сетчатки и самим стекловидным телом.


К главным функциям последнего относят:
  • придание глазу конкретной формы;
  • преломление световых лучей;
  • создание определенного напряжения в тканях органа зрения;
  • достижение эффекта несжимаемости глаза.

Фоторецепторы

Тип нейронов, входящих в состав сетчатой оболочки глаза. Обеспечивают обработку светового сигнала таким образом, что он преобразуется в электрические импульсы. Это запускает процессы биологического характера, приводящие к формированию зрительных образов. На практике фоторецепторные белки вбирают в себя фотоны, что насыщает клетку соответствующим потенциалом.

Светочувствительные образования – это своеобразные палочки и колбочки. Их функциональность способствует правильному восприятию объектов внешнего мира. В результате можно говорить об образовании соответствующего эффекта – зрения. Человек способен видеть за счет биологических процессов, протекающих в таких частях фоторецепторов, как внешние доли их мембран.

Еще существуют светочувствительные клетки, известные как глазки Гессе. Они находятся внутри пигментной клетки, обладающей чашеобразной формой. Работа этих образований заключается в улавливании направления лучей света и определении его интенсивности. С их помощью происходит обработка светового сигнала, когда на выходе получаются электрические импульсы.

Следующий класс фоторецепторов стал известен в 1990-х годах. Под ним подразумеваются светочувствительные клетки ганглиозного слоя сетчатой оболочки. Они поддерживают зрительный процесс, но в косвенной форме. Здесь подразумеваются биологические ритмы в течение суток и зрачковый рефлекс.

Так называемые палочки и колбочки с точки зрения функциональности существенно отличаются друг от друга. Например, первым присуща высокая чувствительность. Если освещение низкое, то именно они гарантируют формирование хоть какого-то зрительного образа. Этот факт дает понять, почему при недостаточной освещенности плохо различаются цвета. В этом случае активен лишь один тип фоторецепторов – палочки.


Для работы колбочек необходим более яркий свет, чтобы обеспечить прохождение соответствующих биологических сигналов. Строение сетчатки предполагает наличие колбочек разных типов. Всего их три. Каждый определяет фоторецепторы, настроенные на конкретную длину волн света.

За восприятие картинки в цвете отвечают отделы коры, ориентированные на обработку зрительной информации, что предполагает распознавание импульсов в формате RGB. Колбочки способны различать световой поток по длине волн, характеризуя их как короткие, средние и длинные. В зависимости от того, сколько фотонов способна поглотить колбочка, формируются соответствующие биологические реакции. Различные ответы этих образований базируются на конкретном количестве вобранных фотонов той или иной длины. В частности, фоторецепторные белки L-колбочек поглощают условный красный цвет, соотносимый с длинными волнами. Лучи света, имеющие меньшую длину, способны приводить к одному и тому же ответу в том случае, если они достаточно яркие.

Реакция одного и того же фоторецептора может провоцироваться волнами света различной длины, когда отличия наблюдаются и на уровне интенсивности светового потока. В результате мозг не всегда определяет свет и получаемую картинку. Посредством зрительных рецепторов происходит отбор и выделение максимально ярких лучей. Затем формируются биосигналы, поступающие в те отделы мозга, где происходит обработка информации такого вида. Создается субъективное восприятие оптической картинки в цвете.

Сетчатка глаза человека состоит из 6 млн колбочек и 120 млн палочек. У животных их количество и соотношение различно. Основное влияние оказывает образ жизни. У сов сетчатка содержит очень значительное количество палочек. Зрительная система человека – это почти 1,5 млн ганглиозных клеток. В их числе есть клетки, обладающие фоточувствительностью.

Хрусталик

Биологическая линза, характеризуемая с точки зрения формы как двояковыпуклая. Выступает в роли элемента светопроводящей и светопреломляющей системы. Обеспечивает возможность фокусировки на предметах, удаленных на разное расстояние. Расположен в задней камере глаза. Высота хрусталика составляет от 8 до 9 мм при его толщине от 4 до 5 мм. С возрастом происходит его утолщение. Этот процесс медленный, но верный. Передняя часть этого прозрачного тела обладает менее выпуклой поверхностью по сравнению с задней.

Форма хрусталика соотносится с двояковыпуклой линзой, имеющей радиус кривизны в передней части около 10 мм. При этом с обратной стороны этот параметр не превышает 6 мм. Диаметр хрусталика – 10 мм, а размер в передней части – от 3,5 до 5 мм. Содержащееся внутри вещество удерживается капсулой с тонкими стенками. Фронтальная часть имеет эпителиальную ткань, расположенную внизу. На задней стороне капсулы эпителия нет.

Эпителиальные клетки отличаются тем, что делятся постоянно, но это не сказывается на объеме хрусталика в плане его изменения. Такая ситуация объясняется обезвоживанием старых клеток, расположенных на минимальном удалении от центра прозрачного тела. Это способствует уменьшению их объемов. Процесс этого вида приводит к такой особенности, как возрастная . При достижении человеком 40-летнего возраста теряется эластичность хрусталика. Снижается резерв аккомодации, и возможность хорошо видеть на близком расстоянии существенно ухудшается.


Хрусталик размещен непосредственно за радужкой. Его удержание обеспечивают тонкие нити, образующие цинновую связку. Один их конец входит в оболочку хрусталика, а другой – закрепляется на цилиарном теле. Степень натяжения этих нитей влияет на форму прозрачного тела, что изменяет преломляющую силу. В итоге становится возможным процесс аккомодации. Хрусталик служит границей между двумя отделами: передним и задним.


Выделяют следующую функциональность хрусталика:
  • светопроводность – достигается за счет того, что тело этого элемента глаза прозрачное;
  • светопреломление – работает как биологическая линза, выступает в роли второй преломляющей среды (первая – роговица). В состоянии покоя параметр преломляющей силы составляет 19 диоптрий. Это норма;
  • аккомодация – изменение формы прозрачного тела в целях хорошего видения предметов, находящихся на разном удалении. Преломляющая сила в этом случае изменяется в диапазоне от 19 до 33 диоптрий;
  • разделение – образует два отдела глаза (передний, задний), что определяется особенностью расположения. Выступает в роли барьера, сдерживающего стекловидное тело. Оно не может оказаться в передней камере;
  • защита – обеспечивается биологическая безопасность. Болезнетворные микроорганизмы, оказавшись в передней камере, не способны проникнуть в стекловидное тело.

Врожденные заболевания в некоторых случаях приводят к смещению хрусталика. Он занимает неправильное положение из-за того, что связочный аппарата ослаблен или имеет какой-либо дефект строения. Сюда еще относят вероятность врожденных помутнений ядра. Все это способствует снижению зрения.

Циннова связка

Образование на основе волокон, определяемых как гликопротеиновые и зонулярные. Обеспечивает фиксацию хрусталика. Поверхность волокон покрыта мукополисахаридным гелем, что обусловливается потребностью в защите от влаги, присутствующей в камерах глаза. Пространство за хрусталиком служит местом, где находится это образование.

Активность цинновой связки приводит к сокращению цилиарной мышцы. Хрусталик изменяет кривизну, что позволяет фокусироваться на объектах, находящихся на разном удалении. Напряжение мышцы ослабляет натяжение, и хрусталик принимает форму, близкую к шару. Расслабление мышцы приводит к напряжению волокон, что сплющивает хрусталик. Фокусировка меняется.


Рассматриваемые волокна подразделяются на задние и передние. Одна сторона задних волокон крепится у зубчатого края, а другая – на фронтальной области хрусталика. Исходной точкой передних волокон служит основание цилиарных отростков, а крепление осуществляется в тыльной части хрусталика и ближе к экватору. Скрещенные волокна способствуют образованию по периферии хрусталика щелевидного пространства.

Крепление волокон на ресничном теле производится в части стекловидной мембраны. В случае отрыва этих образований констатируется так называемый вывих хрусталика, обусловленный его смещением.

Циннова связка выступает в качестве основного элемента системы, обеспечивающей возможность аккомодации глаза.

Видео

О строении глаза возникает много вопросов. Этот орган находится на втором месте после мозга по сложности строения в человеческом организме. Удивительным является то, что такой небольшой по размеру орган зрения имеет огромное количество рабочих систем и отличается большим функционалом. Строение органа зрения предполагает наличие более двух с половиной миллионов составных частей, при этом за краткий миг времени происходит обработка большого числа информации. За счет того, что строение человеческого глаза предполагает скоординированную работу, и выполняются функции. Это является залогом четкого зрения.

О строении глаза человека схема учебника анатомии расскажет подробно. Выделяется несколько отделов, у каждого из которых есть свои функции:

  • веки;
  • ресницы;
  • склеры глаза;
  • роговица;
  • лимб.

Это малая часть тех отделов, которыми представлен человеческий глаз. Под непосредственно глазом понимается глазное яблоко. Оно представлено в шаровидной форме с неправильными очертаниями. В среднем размер составляет более двух десятков мм у взрослого человека. Располагаются глаза в специальном отсеке костного типа – глазницах. С внешней стороны орган зрения защищается веками, по краям специальными мышцами, которые отвечают за передвижение глаз и клетчаткой, относящейся к жировому виду. С обратной стороны находится центральный нерв, который поставляет данные в головной мозг.

Особенности зрения человека заключаются в устройстве процесса, с помощью которого изображение и формируется. Изначально через роговицу, которая выстилает внешнюю сторону глазного яблока, проходит свет. В ней происходит фокусировка первого уровня. Частично радужка рассеивает лучи, остаток же проходит сквозь зрачок. За счет его адаптивности люди могут воспринимать объекты в разном освещении.

Окончательное преломление светового пучка происходит с помощью линзы. После этого осуществляется прохождение через тело стекловидного типа. Лучи рассеиваются по глазной сетчатке, которая выступает как реципиент, которым преобразуется информация, получаемая от потока света, в импульс нервного типа. Непосредственно изображение формируется благодаря расшифровке этого импульса мозгом.

Особенности век

Внешнее строение глаза связано с формированием век. Под ними понимаются специальные перегородки. Главной функцией является защита глазного яблока от внешних факторов и травм. В большинстве своем веко представлено мышечной тканью. С наружной стороны она выстилается тонкой кожей. За счет того, что ткани здесь представлены мышечные, у обоих век есть возможность свободного передвижения.

За счет постоянной смычки век вокруг глазного яблока, происходит увлажнение и удаление частиц, имеющих другое происхождение. В рамках науки о глазах – офтальмологии подчеркивается, что веки – это важный элемент. Устройство глаз выполнено таким образом, что любые повреждения век могут спровоцировать заболевания.

Чтобы сохранялась форма века и оно было прочным, природой «сконструирован» хрящ. Это плотное образование из коллагена. Внутри хрящей расположены железы мейбомиевые, которыми вырабатывается секрет на жировой основе. Он требуется векам для более плотного смыкания.

Изнутри к хрящу крепится конъюнктива глаза. Строение глаза человека предполагает наличие специальной оболочки слизистого типа, которой вырабатывается жидкость. Без нее увлажнение не представлялось бы возможным. Эта жидкость помогает веку лучше скользить по поверхности глазного яблока. Сосуды, выстилающие глаз, представлены в веке системой с большим числом разветвлений. Вековые функции контролируются тремя видами нервов.

Мышцы глаза

Важная роль, определяющая строение и функции глаза, отводится мышечному корпусу. От них зависит то, какое положение будет у глазного яблока, как оно будет функционировать. С внешней и внутренней стороны на веках закреплены десятки мышц. Однако большая часть задач возлагается на мышечные отростки косого и прямого типа.

Группы мышц выходят из сухожильного кольца, которое скрыто в глазничных глубинах. Над мышцей прямого типа, расположенной сверху, к кольцу крепится и мышца, главный функционал которой подъем века, расположенного сверху.

Прямыми мышцами выстилаются глазничные стенки, которыми с разных сторон окружается нерв. На конце мышц располагаются укороченные сухожилия. Строение склеры предполагает крепление их к тканям. Прямые мышцы при этом помогают глазу повернуться в заданном направлении.

Отличается по своему строению косая мышца, расположенная ниже, которая формируется еще на верхней челюсти. Данная мышца имеет верхнее направление в косом исполнении и располагается в задней части. По науке о глазах за счет согласованности в комплексной работе мышц глаза, само яблоко поворачивается в направлении, которое требуется пользователю. Кроме этого, координируется работа двух глаз в одно и то же время.

Строение и функции органа зрения предполагают разные типы оболочек. Каждой выполняется собственный функционал. Речь идет не только о защите от факторов внешнего происхождения, но и о координированной работе.

С помощью фиброзной оболочки, глаз защищается от факторов, которые могут повредить его извне. Собственно, сосудистая оболочка глаз собирает излишки лучей света, не позволяя им в полном объеме попадать на сетчатку, выстилающую орган зрения. Сосудистая оболочка глаза отвечает еще и за распределение кровоснабжения, которое требуется глазному яблоку на различных слоях.

Еще одна оболочка затрагивает глубины глаз. Под нею понимается сетчатка. Этот зрительный отдел имеет две пигментные части, которые располагаются снаружи и внутри. Внутри у отдела сетчатки тоже две части. Одна из них снабжена элементами, реагирующими на свет, другая их лишена.

Мелкие отделы

Склера – это важная часть для зрительного органа. Склера – это оболочка, которая покрывает глазное яблоко почти полностью (80 процентов). Далее склера перетекает в роговицу с передней стороны. В простонародий склера именуется белком глаза. При этом склера имеет венозный синус в круговом исполнении в месте, где анатомия предполагает соединение с роговицей.

Роговица может считаться продолжением склеры глаз. Этот элемент глазного яблока можно воспринимать как пластинку, которая отличается бесцветностью. Передняя роговичная часть отличается выпуклостью, а сзади имеется некоторое углубление. Краем она соприкасается с телом склеры. Некоторые сравнивают это со стеклом от часов. Роговицу физика бы отнесла к объективу, без которого зрительный процесс невозможен.

Следующий важный физический отдел – радужка. Под нею понимается видимая часть сосудистой оболочки. Она имеет дисковую форму, по центру которой расположен зрачок, представляющий собой отверстие. Радужкой определяется цвет глаз человека. Зависит он от того, насколько плотна строма и сколько пигмента в ней используется.

Когда пигментов используется немного и при тканях высокой рыхлости, радужка чаще имеет голубой оттенок. Если пигмента достаточно, но рыхлость ткани такая же, может проявляться зеленый оттенок. Плотные ткани с небольшим количеством пигмента характерны для серых глаз. Высокая плотность вкупе с большим пигментным количеством встречается у обладателей карих глаз.

Радужка имеет не такую большую толщину. Это 0,2-0,4 десятых миллиметра. На поверхности в передней части имеется ресничный и зрачковый поясок. Для их разделения применяется малый круг артерий. Сплетается он из артерий тонкого размера.

Множество элементов имеет и цилиарное тело. Располагается цилиарное тело вслед за радужкой. Главная задача этой части глаза – производство специального состава. По большому счету цилиарное тело отвечает за напитывание и заполнение жидкостью глазных отделов, расположенных в передней части. Его полностью пронизывают сосуды глаза. При этом жидкость, которую продуцирует цилиарное тело, отличается рядом особенностей.

Кроме огромного числа сосудов, цилиарное тело отличает развитый мышечный комплекс. За счет расслабления и сокращения изменяется форма хрусталика. При сокращении хрусталик увеличивается в толщине, значит, оптический эффект усиливается. Это важно для получения качественного изображения предметов, которые располагаются рядом с человеком. Если мышцы расслаблены, то хрусталик сокращается по толщине своей, и человек может различать предметы, расположенные вдалеке.

Дополнительные части

Под понятием хрусталик, анатомия понимает тело прозрачного цвета, которое располагается напротив зрачка. Хрусталик скрыт в глубинах глазного яблока. По большому счету хрусталик может считаться биологической линзой, которая отличается формой с двойной выпуклостью. Именно хрусталику отводится главная роль. Без его нормального функционирования человеческое зрение не сможет правильно работать. В качестве окружения хрусталика выступает тело стекловидного типа и радужка. Если человек не страдает от нарушений развития, то толщина хрусталика в своем максимальном значении может варьироваться от трех до пяти миллиметров.

Еще один важный отдел – это сетчатка, которой глаз выстилается изнутри. С ее помощью выполняется проекция имеющегося изображения и его итоговая обработка. При нарушениях в работе ее может стягивать эпиретинальная мембрана. Эпиретинальная мембрана – это рубцовая ткань, которая приводит к формированию складок и морщин. Стоит отметить, что, эпиретинальная мембрана часто образуется как осложнение какого-то глазного заболевания. Чаще всего эпиретинальная мембрана регистрируется у людей старшего поколения, начиная от 65 лет. При этом эпиретинальная мембрана не имеет половой зависимости, и встречается одинаково часто у мужчин и у женщин.

С помощью сетчатки различные потоки информации формируются в общий. Здесь происходит несколько этапов фильтрования и переработки информации другими отделами, которые присутствуют в глазном яблоке. В результате формируется импульс, который и достигает мозга через нервные окончания.

База сетчатки формируется двумя клеточными типами. Колбочки и палочки являются фоторецепторами и выступают в роли преобразователей энергии света в «электричество». При небольшом количестве источников света важной частью зрения являются палочки, а колбочки в большинстве своем подключаются при достаточной освещенности. Благодаря ним различаются цвета и мелкие детали объектов. Недостатком сетчатки является ее неплотное прилегание к оболочке из сосудов. В результате происходит отслоение при микротравмах, что становится причиной глазных заболеваний.

Как изменяется и обрабатывается свет

Структура светопреломления в человеческом глазе имеет линзовую систему. Первой линзой является роговица глаза. За счет этой части, человек может видеть на 190 градусов вокруг себя. При нарушениях в роговице, формируются туннельные патологии зрения. Окончательно пучок света преломляется глазным хрусталиком, который отвечает за фокусировку лучей на небольшом по объему участке сетчатки. Хрусталиком варьируется острота зрения, при изменениях наступает близорукость или дальнозоркость.

С помощью структур аккомодации регулируется интенсивность света, который поступает и выполняется фокусировка. В состав аккомодационной структуры входит радужка, зрачок, мышцы разного типа.

К ней иногда относят и хрусталик. За счет изменения кривизны, человеческий глаз фокусируется на предметах, расположенных рядом или вдалеке. За изменение кривизны отвечают цилиарные мышцы. Регулируется световой поток из-за изменений зрачкового диаметра, что приводит к расширению или сужению радужки. За каждый из этих процессов отвечает своя группа радужковых мышц.

Структура рецепторного типа представлена сетчаткой, в которой располагаются клетки-фоторецепторы и нейроны, которые подходят к ним. Сетчатка имеет сложное анатомическое строение, она отличается неоднородностью. На ней присутствует слепое пятно и участок, имеющий повышенную чувствительность. В ней присутствует десять слоев. Главная функция обработки информации света возлагается на фоторецепторные клетки, которые имеют палочковый и колбочковый вид.


Органы зрения рыб устроены в основном так же, как у других позвоночных. Сходен с остальными позвоночными у них и механизм восприятия зрительных ощущений: свет проходит в глаз через прозрачную роговицу, далее зрачок – отверстие в радужной оболочке – пропускает его на хрусталик, а хрусталик передает фокусирует свет на внутреннюю стенку глаза сетчатку, где и происходит его непосредственное восприятие. Сетчатка состоит из светочувствительных (фоторецепторные), нервных, а также опорных клеток.

Светочувствительные клетки располагаются со стороны пигментной оболочки. В их отростках, имеющих форму палочек и колбочек, имеется светочувствительный пигмент. Количество этих фоторецепторных клеток очень велико – на 1 мм 2 сетчатки у карпа их насчитывается 50 тыс. (у кальмара – 162 тыс., паука – 16 тыс., человека – 400 тыс., совы – 680 тыс.). Посредством сложной системы контактов конечных разветвлений чувствующих клеток и дендритов нервных клеток световые раздражения поступают в зрительный нерв.

Колбочки при ярком свете воспринимают детали предметов и цвет. Палочки воспринимают слабый свет, но детального изображения создать не могут.

Положение и взаимодействие клеток пигментной оболочки, палочек и колбочек меняются в зависимости от освещенности. На свету пигментные клетки расширяются и прикрывают находящиеся около них палочки; колбочки подтягиваются к ядрам клеток и таким образом передвигаются к свету. В темноте к ядрам подтягиваются палочки (и оказываются ближе к поверхности); колбочки приближаются к пигментному слою, а сократившиеся в темноте пигментные клетки прикрывают их.

Количество рецепторов разного рода зависит от образа жизни рыб. У дневных рыб в сетчатке превалируют колбочки, у сумеречных и ночных – палочки: у налима палочек в 14 раз больше, чем у щуки. У глубоководных рыб, живущих в темноте глубин, колбочек нет, а палочки становятся больше и количество их резко увеличивается – до 25 млн/мм 2 сетчатки; вероятность улавливания даже слабого света возрастает. Большая часть рыб различает цвета, что подтверждается возможностью выработки у них условных рефлексов на определённый цвет – синий, зеленый, красный, жёлтый, голубой.

Некоторые отступления от общей схемы строения глаза рыбы связаны с особенностями жизни в воде. Глаз рыбы эллипсовидный. В числе других он имеет серебристую оболочку (между сосудистой и белковой), богатую кристалликами гуанина, которая придает глазу зеленовато-золотистый блеск.

Роговица почти плоская (а не выпуклая), хрусталик шаровидный (а не двояковыпуклый) – это расширяет поле зрения. Отверстие в радужной оболочке – зрачок – может изменять диаметр только в небольших пределах. Век у рыб, как правило, нет. Лишь акулы имеют мигательную перепонку, закрывающую глаз как занавеска, и некоторые сельди и кефали – жировое веко – прозрачную пленку, закрывающую часть глаза.

Расположение глаз по бокам головы (у большинства видов) является причиной того, что рыбы обладают в основном монокулярным зрением, а способность к бинокулярному зрению весьма ограничена. Шаровидность хрусталика и перемещение его вперед к роговице обеспечивает широту поля зрения: свет в глаз попадает со всех сторон. Угол зрения по вертикали составляет 150°, по горизонтали– 168–170°. Но вместе с тем шаровидность хрусталика обусловливает близорукость рыб. Дальность их зрения ограничена и колеблется в связи с мутностью воды от нескольких сантиметров до нескольких десятков метров.

Видение на дальние расстояния становится возможным благодаря тому, что хрусталик может быть оттянут специальной мышцей–серповидным отростком, идущим от сосудистой оболочки дна глазного бокала.

При помощи зрения рыбы ориентируются и относительно предметов, находящихся на земле. Улучшение зрения в темноте достигается наличием отражательного слоя (тапетум) – кристалликов гуанина, подстилаемых пигментом. Этот слой не пропускает свет к лежащим позади сетчатки тканям, а отражает его и возвращает вторично на сетчатку. Так увеличивается возможность рецепторов использовать свет, попавший в глаз.

В связи с условиями обитания глаза рыб могут сильно видоизменяться. У пещерных или абиссальных (глубоководных) форм глаза могут редуцироваться и даже исчезать. Некоторые же глубоководные рыбы, наоборот, имеют огромные глаза, позволяющие улавливать совсем слабые следы света, или телескопические глаза, собирающие линзы которых рыба может поставить параллельно и обрести бинокулярное зрение. Глаза некоторых угрей и личинок ряда тропических рыб вынесены вперед на длинных выростах (стебельчатые глаза).

Необычна модификация глаз у четырехглазки из Центральной и Южной Америки. Ее глаза помещаются на верху головы, каждый из них разделен перегородкой на две самостоятельные части: верхней рыба видит в воздухе, нижней– в воде. В воздушной среде могут функционировать глаза рыб, выползающих на берег или деревья.

Роль зрения как источника информации из внешнего мира для большинства рыб очень велика: при ориентации во время движения, при отыскивании и захвате пищи, при сохранении стаи, в нерестовый период (восприятие оборонительных и агрессивных поз и движений самцами-соперниками, а между особями разных полов – брачного наряда и нерестового “церемониала”), в отношениях жертва –хищник и т. д.

Способность рыб воспринимать свет издавна использовалась в рыболовстве (лов рыбы на свет факела, костра и т. д.).

Известно, что рыбы разных видов неодинаково реагируют на свет разной интенсивности и разной длины волны, т. е. разного цвета. Так, яркий искусственный свет привлекает одних рыб (каспийская килька, сайра, ставрида, скумбрия и др.) и отпугивает других (кефаль, минога, угорь и т. д.). Так же избирательно относятся разные виды к разным цветам и разным источникам света – надводным и подводным. Все это положено в основу организации промышленного лова рыбы на электросвет (так ловят кильку, сайру и других рыб).



Глазной аппарат является стереоскопическим и в организме отвечает за правильное восприятие информации, точность ее обработки и дальнейшую передачу в мозг.

Правая часть сетчатки, посредством передачи через зрительный нерв, отправляет в мозг информацию правой доли изображения, левая часть передает левую долю, в итоге, мозг соединяет обе, и получается общая зрительная картинка.

Хрусталик фиксируется тонкими нитями, один конец которых плотно вплетен в хрусталик, его капсулу, а другой конец соединен с ресничным телом.

При изменении натяжения нитей, происходит процесс аккомодации . Хрусталик лишен лимфатических сосудов и кровеносных, а также нервов.

Он обеспечивает глаз проведением света и светопреломлением, наделяет его функцией аккомодации, и является разделителем глаза на задний отдел и передний отдел.

Стекловидное тело

Стекловидное тело глаза является самым большим образованием. Это вещество без цвета гелеобразной субстанции, которое образовано в виде шарообразной формы, в сагиттальном направлении оно сплющено.

Стекловидное тело состоит из вещества гелеобразной субстанции органического происхождения, мембраны и стекловидного канала.

Перед ним находится хрусталик, зонулярная связка и цилиарные отростки, задняя его часть вплотную подходит к сетчатке. Соединение стекловидного тела и сетчатки происходит у зрительного нерва и в части зубчатой линии, где находится плоская часть цилиарного тела. Данная область является основание стекловидного тела, а ширина этого пояса 2-2,5 мм.

Химический состав стекловидного тела: 98,8 гидрофильный гель, 1,12% сухой остаток. При возникновении кровоизлияния, тромбопластическая активность стекловидного тела резко возрастает.

Такая особенность направлена на остановку кровотечения. В нормальном состоянии стекловидного тела фибринолитическая активность отсутствует.

Питание и поддерживание среды стекловидного тела обеспечивается диффузией питательных веществ, которые через стекловидную мембрану, поступают в тело из внутриглазной жидкости и осмосом.

В стекловидном теле нет сосудов и нервов, а биомикроскопическая его структура представляет различных форм лент серого цвета с белыми крапинками. Между лентами находятся участки без цвета, совершенно прозрачные.

Вакуоли и помутнения в стекловидном теле проявляются с возрастом. В случае, когда происходит частичная потеря стекловидного тела, место заполняется внутриглазной жидкостью.

Камеры с водянистой влагой

У глаза две камеры, которые заполнены водянистой влагой. Влага образуется из крови отростками цилиарного тела. Ее выделение происходит сначала в переднюю камеру, затем она попадает в переднюю камеру.

В переднюю камеру водянистая влага поступает через зрачок. В сутки глаз человека производит от 3 до 9 мл влаги. В водянистой влаге присутствуют вещества, которые питают хрусталик, эндотелий роговицы, переднюю часть стекловидного тела, а также трабекулярную сеть.

В ней находится иммуноглобулины, которые помогают удалять опасные факторы из глаза, его внутренней части. Если отток водянистой влаги нарушен, то это может развить такое глазное заболевание, как глаукома , а также к повышению давления внутри глаза.

В случаях нарушения целостности глазного яблока, потеря водянистой влаги приводит к гипотонии глаза.

Радужная оболочка

Радужная оболочка – авангардный отдел сосудистого тракта . Располагается она сразу за роговицей, между камерами и перед хрусталиком. Радужная оболочка имеет круглую форму и расположена вокруг зрачка.

Состоит она из пограничного слоя, стромального слоя и пигментно-мышечного слоя. У нее неровная поверхность с рисунком. В радужной оболочке присутствуют клетки пигментного характера, которые и отвечают за цвет глаз.

Главные задачи радужки: регулирование светового потока, который проходит на сетчатку глаза через зрачок и защита светочувствительных клеток. От правильного функционирования радужки зависит острота зрения.

У радужной оболочки две группы мышц. Одна группа мышц дислоцируется вокруг зрачка и регулирует его уменьшение, другая группа дислоцируется радиально по толщине радужной оболочки, регулируя расширение зрачка. Радужная оболочка имеет множество кровеносных сосудов.

Сетчатка

Является оптимально тонкой оболочкой нервной ткани и представляет тобой периферический отдел зрительного анализатора. В сетчатке присутствуют фоторецепторные клетки, которые отвечают за восприятие, а также, за преобразование в нервные импульсы электромагнитного излучения. Она прилегает с внутренней стороны к стекловидному телу, а к сосудистому слою глазного яблока – снаружи.

У сетчатки две части. Одна часть – зрительная, другая – слепая часть, которая не содержит фоточувствительных клеток. Внутренняя структура сетчатки разделяется на 10 слоев.

Главная задача сетчатки – принимать световой поток, обрабатывать его, переводя в сигнал, который образует в себе полную и закодированную информацию о зрительной картинке.

Зрительный нерв

Зрительный нерв – переплетение нервных волокон. Среди этих тонких волокон находится центральный канал сетчатки. Исходная точка зрительного нерва находится в ганглиозных клетках, далее его формирование происходит путем прохождения через оболочку склеры и обрастания нервных волокон менингеальными структурами.

Глазной нерв имеет три слоя – твердый, паутинный, мягкий. Между слоями находится жидкость. Диаметр зрительного диска составляет около 2 мм.

Топографическое строение зрительного нерва:

  • внутриглазной;
  • внутриорбитальный;
  • внутричерепной;
  • внутриканальцевый;

Принцип работы глаза человека

Световой поток проходит через зрачок и сквозь хрусталик приводится в фокус на сетчатке. Сетчатка богата светочувствительными палочками и колбочками, которых в человеческом глазу более 100 миллионов.

Видео: "Процесс зрения"

Палочки обеспечивают чувствительность к свету, а колбочки дают глазам свойство различать цвета и небольшие детали. После преломления светового потока, сетчатка трансформирует картинку в нервные импульсы. Далее эти импульсы переходят в мозг, который обрабатывает поступившую информацию.

Болезни

Болезни, связанные с нарушением строения глаз, могут вызываться как неправильным расположением его частей по отношению друг к другу, так и внутренними дефектами этих частей.

К первой группе относятся заболевания, приводящие к снижению остроты зрения:

  • Близорукость . Характеризуется увеличенной по сравнению с нормой длиной глазного яблока. Это приводит к фокусировке света, проходящего через хрусталик, не на сетчатке, а перед ней. Нарушается способность видеть предметы, находящиеся на удалении от глаз. Близорукости соответствует отрицательное число диоптрий при измерении остроты зрения.
  • Дальнозоркость . Является следствием уменьшения длины глазного яблока или утери хрусталиком эластичности. В обоих случаях снижаются аккомодационные возможности, нарушается правильная фокусировка изображения, световые лучи сходятся за сетчаткой. Нарушается способность видеть предметы, расположенные вблизи. Дальнозоркости соответствует положительное число диоптрий.
  • Астигматизм . Для этого заболевания характерно нарушение сферичности глазной оболочки из-за дефектов хрусталика или роговицы. Это приводит к неравномерному схождению поступающих в глаз лучей света, четкость получаемого мозгом изображения нарушается. Астигматизму нередко сопутствует близорукость или дальнозоркость.

Патологии, связанные с функциональными нарушениями тех или иных частей органа зрения:

  • Катаракта . При этом заболевании хрусталик глаза мутнеет, нарушаются его прозрачность и способность к проведению света. В зависимости от степени помутнения, нарушения зрения могут быть разными вплоть до полной слепоты. У большинства людей катаракта возникает в старости, но не прогрессирует до тяжелых стадий.
  • Глаукома – патологическое изменение внутриглазного давления. Может провоцироваться множеством факторов, например, уменьшением передней камеры глаза или развитием катаракты.
  • Миодезопсия или «летающие мушки» перед глазами . Характеризуется появлением черных точек в поле зрения, которые могут быть представленными в разных количествах и размерах. Точки возникают из-за нарушений в строении стекловидного тела. Но у этого недуга причины не всегда являются физиологическими – «мушки» могут появляться из-за переутомления или после перенесения инфекционных заболеваний.
  • Косоглазие . Провоцируется изменением правильного положения глазного яблока по отношению к глазной мышце или нарушением работы глазных мышц.
  • Отслоение сетчатки. Сетчатая оболочка и задняя сосудистая стенка отделяются друг от друга. Это происходит из-за нарушения герметичности сетчатки, случающегося при разрывах ее тканей. Отслоение проявляется помутнением очертания предметов перед глазами, появлением вспышек в виде искр. Если из поля зрения выпадают отдельные углы, это значит, что отслоение приняло тяжелые формы. При отсутствии лечения наступает полная слепота.
  • Анофтальм – недостаточная развитость глазного яблока. Редкая врожденная патология, причина которой заключается в нарушении формирования лобных долей мозга. Анофтальм может быть и приобретенным, тогда он развивается после хирургических операций (например, по удалению опухолей) или тяжелых травм глаз.

Профилактика

  • Следует заботиться о здоровье кровеносной системы, в особенности той ее части, которая отвечает за приток крови к голове. Многие дефекты зрения возникают из-за атрофии и повреждения глазных и головных нервов.
  • Нельзя допускать перенапряжения глаз. При работе, связанной с постоянным рассмотрением мелких объектов, нужно делать регулярные перерывы с проведением глазной гимнастики. Рабочее место должно обустраиваться так, чтобы яркость освещения и расстояния между предметами были оптимальными.
  • Поступление в организм достаточного количества минералов и витаминов – это еще одно условие сохранения зрения здоровым. Особенно для глаз важны витамины C, E, A и такие минералы, как цинк.
  • Правильная глазная гигиена позволяет предотвратить развитие воспалительных процессов, осложнения которых могут значительно ухудшить зрение.

Доцент кафедры глазных болезней. | Главный редактор сайта

Занимается экстренной, амбулаторной и плановой офтальмологией. Проводит диагностику и консервативное лечение дальнозоркости, аллергических заболеваний век, близорукости. Выполняет зондирование, удаление инородных тел, осмотр глазного дна с трехзеркальной линзой, промывание носослёзных каналов.


Рассказать друзьям